CLaRK — an XML-based System for Corpora Development*

Kiril Simov, Alexander Simov, Hristo Ganev, Milen Kouylekov,
[lko Grigorov, Krasimira [vanova.
BulTreeBank Project
http://www.BulTreeBank.org

Linguistic Modelling Laboratory, Bulgarian Academy of Sciences

Acad. G. Bonchev St. 25A, 1113 Sofia, Bulgaria
kivs@bultreebank.org, alex@bultreebank.org,

hristo@bultreebank.org, milen@bultreebank.org,
ilko@bultreebank.org, krassy v@bultreebank.org

BulTreeBank Technical Report BTB-TRO06

31.08.2004

1 Introduction

This report will present the main body of the documentation for the CLaRK System. It is based on
a paper presented at the Corpus Linguistics 2001 conference in Lancaster. The idea of the paper is to
present the main technologies on which the CLaRK System is based.

In this paper we describe the architecture and the intended applications of the CLaRK System. The
development of the CLaRK System started under the Tiibingen-Sofia International Graduate Programme
in Computational Linguistics and Represented Knowledge (CLaRK). The main aim behind the design
of the system is the minimization of human intervention during the creation of corpora. Creation of
corpora is still an important task for the majority of languages like Bulgarian, where the invested effort
in such development is very modest in comparison with more intensively studied languages like English,
German and French. We consider the corpora creation task to be the editing, manipulation, searching and
transforming of documents. Some of these tasks will be done for a single document or a set of documents,
others will be done on a part of a document. Besides efficiency of the corresponding processing in each
state of the work, the most important investment is the human labour. Thus, in our view, the design
of the system has to be directed to minimization of the human work. For document management,
storing and querying we chose the XML technology because of its popularity, flexibility and ease for
understanding. It has become a part of our lives as it is the predominant language for data description
and exchange on the Internet. Moreover, a lot of already developed standards for corpus descriptions like
[XCES, 2001] and [TEI, 2001] are already adapted to the XML requirements. The core of the CLaRK
System is an XML editor which is the main interface to the system. With the help of the editor the user
can create, edit or browse XML documents. To facilitate the corpus management, we enlarge the XML
inventory with facilities that support linguistic work. We added the following basic language processing
modules: a tokenizer with a module that supports a hierarchy of token types, a finite-state engine that
supports the writing of cascaded finite-state grammars and facilities that search for regular expression
patterns, the XPath query language which is able to support navigation over the whole set of mark-up

*This work is funded by the Volkswagen Stiftung, Federal Republic of Germany under the Programme “Cooperation
with Natural and Engineering Scientists in Central and Eastern Europe” contract 1/76 887.

of a document, mechanisms for imposing constraints over XML documents which are applicable in the
context of some events. We envisage several uses for our system:

1. Corpora markup. Here users work with the XML tools of the system in order to mark-up texts
with respect to an XML DTD. This task usually requires an enormous human effort and comprises
both the mark-up itself and its validation afterwards. Using the available grammar resources such
as morphological analyzers or partial grammars, the system can state local constraints reflecting
the characteristics of a particular kind of texts or mark-up. One example of such constraints can
be as follows: a PP according to a DTD can have as parent a NP or VP, but if the left sister is a
VP then the only possible parent is VP. The system can use such kind of constraints in order to
support the user and minimize his/her work.

2. Dictionary compilation for human users. The system will support the creation of the actual lexical
entries whose structure will be defined via an appropriate DTD. The XML tools will be used also for
corpus investigation that provides appropriate examples of the word usage in the available corpora.
The constraints incorporated in the system will be used for writing a grammar of the sublanguages
of the definitions of the lexical items, for imposing constraints over elements of lexical entries and
the dictionary as a whole.

3. Corpora investigation. The CLaRK System offers a rich set of tools for searching over tokens and
mark-up in XML corpora, including cascaded grammars, XPath language. Their combinations are
used for tasks such as: extraction of elements from a corpus - for example, extraction of all NPs
in the corpus; concordance - for example, give me all NPs in the context of their use ordered by a
user defined set of criteria.

The structure of the paper is as follows: in the next section we give a short introduction to the main
technologies on which the CLaRK System is built: these are: XML technology - notions of XML
language and XPath querying language; Cascaded regular grammars - regular expressions, cascaded
grammars, application within the XML technology; Unicode-based tokenizers - the encoding within
the system is based on Unicode and the user can define a hierarchy of tokenizers depending on the
needs; Constraint engines - several techniques for imposing restrictions over documents’ content on
the basis of different conditions (for example, the context); MultiQuery tool - an architecture for
integration of different system tools in complex processing procedures. The third section describes the
main components of the CLaRK System and their functionality, the last section outlines some directions
for future development.

2 The technologies behind the CLaRK System

2.1 XML technology
2.1.1 eXtendible Markup Language (XML)

XML stands for eXtendible Markup Language (see [XML, 2000]) and it emerged as a new generation
language for data description and exchange for Internet use. The language is more powerful than HTML
and easier to implement than SGML. Starting as a markup language, XML is evolved into a technology for
structured data representation, exchange, manipulation, transformation, and querying. The popularity
of XML and its ease for learning and use made it a natural choice for the basis of the CLaRK System.
This section presents in an informal way some of the most important notions of the XML technology.
For more rigorous and full presentation the reader is directed to the corresponding literature on the
following address: http://www.w3c.org/XML/. XML defines the notion of structured document in terms
of sequences and inclusions of elements in the structure of the document. The whole document is
considered as an element which contains the rest of the elements. The elements of the structure of a
document are marked-up by means of tags. Tags can surround the content of an element or tags can mark

some points in the document. In the first case the beginning of an element is marked-up by the so called
opening tag written as <tagname> and the end is marked-up by a closing tag written as </tagname>.
For example, TEI documents include on top level the following two elements:

<TEI.2>
<TeiHeader> ... content of the TEI header element ...
</TeiHeader>
<text> ... Content of the text element ... </text>
</TEI.2>

The tags of the second kind, so-called empty elements, are usually represented as <tag/>. For example,
a line break within a sentence can be represented in the following way:

<s>...first line of text... <1b/> ...second line of text...</s>

Each element can be connected with a set of attributes and their values. The currently assigned set of
attributes of an element is recorded within the opening tag of the element or before the closing slash in
an empty element. Some of the attribute-value pairs are by default assigned to some tags and thus it is
not obligatory to list them.

One important requirement for an XML document is that elements having common content must strictly
include one into another. This means that overlap of the elements is forbidden. Such documents are called
well-formed. For example, the following document is not well-formed and thus it is not an acceptable
XML document:

<doc><ell> ... <el2> ... </ell> ... </el2></doc>

The XML technology defines a set of mechanisms for imposing constraints over XML documents. Such
kind of a very basic mechanism is the so called DTD (Document Type Definition). A DTD defines the
inclusion of elements and the possible sequences of elements within the content of an element. These
definitions are given as ELEMENT statements in the DTD. Each ELEMENT statement has the following
format:

<!ELEMENT tagname content_definition>

where tagname is the name of the element and content definition is a definition of the content of this
kind of elements. Besides some reserved words as EMPTY and ANY, the content definition is represented as
a regular expression over tag names. This regular expression determines the tags and their order in the
content of the enclosing element. Additionally, the DTD can contain definitions of the allowed attributes
for the elements, entity declarations and others. For more details, the interested reader is directed to
the literature on the corresponding notions - see the above address.

An XML document containing elements whose content obeys the restrictions stated in a DTD is said to
be valid with respect to this DTD.

2.1.2 XML Path Language (XPath)

Another important language defined within the XML world and used within the CLaRK System is the
XPath language. XPath is a powerful language for selecting elements from an XML document. The
XPath engine considers each XML document as a tree where the nodes of the tree represent the elements
of the document, the document’s outer most tag is the root of the tree and the children of a node represent
the content of the corresponding element. Attributes and their values of each element are represented as
an addition to the tree. This section is based on the following document [XPath, 1999].

For instance, the following XML document:

<S>
<NP><N n="sg"> John </N></NP>
<VP>
<V t="pr'"> loves </V>
<NP><N n="sg"> Mary </N></NP>
</VP>
</S>

is represented as the following tree:

In this picture the rectangles correspond to elements in the XML document and they are called element
nodes, the ovals represent the text elements in the document and they are called text nodes, and the
rounded rectangles contain the attribute-value pairs and they are called attribute nodes. Each rectangle
contains the tag of the corresponding element, each text node contains the text from the content of the
corresponding element in the document. Each attribute node is attached to the element that contains it.
The root of the tree corresponds to the element containing the whole document. The immediate descen-
dant nodes of a given node N represent the content of the node N. The attribute nodes are considered
in a different way and they are connected with the corresponding nodes in a different dimension. Thus
the attribute nodes are not descendant nodes of any node in the tree.

The XPath language uses the tree-based terminology to point into some direction within the tree. One of
the basic notions of the XPath language is the so called context node, i.e. a chosen node in the tree. Each
expression in the XPath language is evaluated with respect to some context node. The nodes in the tree
are categorized with respect to the context node as follows: the nodes immediately under the context
node are called children of the context node; all nodes under the context node are called descendant
nodes of the context node; the node immediately above the context node is called parent of the context
node; all nodes that are above the context node are called ancestor nodes of the context node; the nodes
that have the same parent as the context node are called sibling nodes of the context node; siblings of
the context node are divided into two types: preceding siblings and following siblings, depending on their
order with respect to the context node in the content of their parent - if the sibling is before the context

node, then it is a preceding sibling, otherwise it is a following sibling. Attribute nodes are connected to
the context node as attribute nodes and they are not children, descendant, parent or ancestor nodes of
the context node. The context node with respect to itself is called self node. Some examples: let the
"VP" node in the above tree be the context node, then its children are the "V" node and "NP" node that
immediately dominates the node "Mary"; its descendant nodes (or simply descendants) are the nodes:
"y", "loves", "NP" 6 "N", "Mary"; its parent is the node "S"; this node is also an ancestor of the node
"VP": its sibling is the left node "NP" and more precisely this is a preceding sibling. If the context node
is "V" then its ancestor nodes (or simply ancestors) are the nodes "VP" and "S"; its attribute node is
the node ’t="pr"?; its following sibling is the right "NP" node.

Another important concept of the XPath language is the location path. Informally, the location path is
a description of how to reach some nodes in the tree from the context node. More formally, the location
path is a kind of expression. The location path selects a set of nodes relative to the context node. The
result of evaluating a location path expression is a node-set containing the nodes selected by the location
path. Location paths can recursively contain expressions that are used to filter sets of nodes. The next
section describes the syntax and meaning of location path expressions.

Location Paths

Although location paths are not the most general grammatical construct in the language, they are the
most important construct and therefore they will be described first. Every location path can be expressed
via a straightforward but rather verbose syntax. There are also a number of syntactic abbreviations
specific for the CLaRK System (not 100% conformant to the recommendation) that allow common
cases to be expressed concisely. This section will explain the semantics of location paths using the
unabbreviated syntax. The abbreviated syntax will then be explained by showing its expansion into the
unabbreviated syntax . Here are some examples of location paths using the unabbreviated syntax:

e child: :para selects the para element children of the context node

e child::* selects all children (element and text nodes) of the context node (different from the
recommendation)

e child::text () selects all text node children of the context node

e child::node() selects all children (element and text nodes) of the context node (different from
the recommendation)

e attribute: :name selects the name attribute of the context node

e attribute: :* selects all the attributes of the context node

e descendant: :para selects the para element descendants of the context node
e ancestor::div selects all div ancestors of the context node

e ancestor-or-self::div selects the div ancestors of the context node and, if the context node is
a div element, selects the context node itself as well

e descendant-or-self::para selects the para element descendants of the context node and, if the
context node is a para element, selects the context node itself as well

e self::para selects the context node if it is a para element, and otherwise selects nothing

e child::chapter/descendant: :paraselects the para element descendants of the chapter element
children of the context node

e child::*/child: :para selects all para grandchildren of the context node

e /descendant: :para selects all the para elements in the same document as the context node

e /descendant::olist/child::item selects all the item elements that have an olist parent and
that are in the same document as the context node

e child: :paral[position()=1] selects the first para child of the context node
e child: :para[position()=last()] selects the last para child of the context node
e child: :para[position()=last()-1] selects the second last para child of the context node

e child: :para[position()>1] selects all para children of the context node excluding the first para
child of the context node

e following-sibling: :chapter[position()=1] selects the next chapter sibling of the context
node

e preceding-sibling: :chapter[position()=1] selects the previous chapter sibling of the context
node

e /descendant::figure[position()=42] selects the forty-second figure element in the document

e /child::doc/child: :chapter[position()=5]/child: :section[position()=2] selects the sec-
ond section of the fifth chapter of the doc document element

e child::paralattribute: :type="warning"] selects all para children of the context node that
have a type attribute with value warning

e child::paralattribute: :type=’warning’] [position()=5] selects the fifth para child of the
context node that has a type attribute with value warning

e child::para[position()=5] [attribute: :type="warning"] selects the fifth para child of the
context node if that child has a type attribute with value warning -

e child::chapter([child::title=’Introduction’] selects the chapter children of the context
node that have one or more title children with string-value equal to Introduction

e child::chapter[child::title] selects the chapter children of the context node that have one
or more title children

e child::x[self::chapter or self::appendix] selects the chapter and appendix children of the
context node

e child::x[self::chapter or self::appendix][position()=last()] selects the last chapter
or appendix child of the context node

There are two kinds of location path: relative location paths and absolute location paths.

A relative location path consists of a sequence of one or more location steps separated by / (slash). The
steps in a relative location path are composed together from left to right. Each step in turn selects a set
of nodes relative to a context node. An initial sequence of steps is composed together with a following
step as follows. The initial sequence of steps selects a set of nodes relative to a context node. Each node
in that set is used as a context node for the following step. The sets of nodes identified by that step are
united together. The set of nodes identified by the composition of the steps is this union. For example,
child::div/child: :para selects the para element children of the div element children of the context
node, or, in other words, the para element grandchildren that have div parents.

An absolute location path consists of / followed by a relative location path. The slash / selects the root
node of the document as a context node for the following relative location path. The slash itself is not
a location path in the CLaRK System. If the root node has to be selected, the expression /self::* is
to be used.

Location Steps

A location step has three parts:

e an axis, which specifies the tree relationship between the nodes selected by the location step and
the context node,

e 3 node test, which specifies the node type or the name of the nodes selected by the location step,
and

e zero or more predicates, which use arbitrary expressions for further refining the set of nodes selected
by the location step.

The syntax for a location step is the axis name and node test separated by two colons, followed by zero
or more expressions, each in square brackets. For example, in child: :para[position()=1], child is the
name of the axis, para is the node test and [position()=1] is a predicate.

The node-set selected by the location step is the node-set that results from generating an initial node-set
from the axis and node-test, and then filtering that node-set by each of the predicates in turn.

The initial node-set consists of the nodes having the relationship to the context node specified by the
axis, and having the node type or name specified by the node test. For example, a location step
descendant: :para selects the para element descendants of the context node: descendant specifies
that each node in the initial node-set must be a descendant of the context; para specifies that each node
in the initial node-set must be an element named para. The available axes are described in Axes. The
available node tests are described in Node Tests.

The initial node-set is filtered by the first predicate to generate a new node-set; this new node-set is
then filtered using the second predicate, and so on. The final node-set is the node-set selected by the
location step. The axis affects the evaluation of the expression in each predicate and so the semantics of
a predicate is defined with respect to an axis.

Axes
The following axes are available in the implementation of XPath in the CLaRK System:

e the child axis contains the children of the context node

e the descendant axis contains the descendants of the context node; a descendant is a child or a
child of a child and so on; thus the descendant axis never contains attribute or namespace nodes

e the parent axis contains the parent of the context node, if there is one

e the ancestor axis contains the ancestors of the context node; the ancestors of the context node
consist of the parent of the context node and the parent’s parent and so on; thus, the ancestor axis
will always include the root node, unless the context node is the root node

e the following-sibling axis contains all the following siblings of the context node; if the context
node is an attribute node, the following-sibling axis is empty

e the preceding-sibling axis contains all the preceding siblings of the context node; if the context
node is an attribute node, the preceding-sibling axis is empty

e the following axis contains all nodes in the same document as the context node that are after
the context node in document order, excluding any descendants and attribute nodes

e the preceding axis contains all nodes in the same document as the context node that are before
the context node in document order, excluding any ancestors and attribute nodes

e the attribute axis contains the attributes of the context node; the axis will be empty unless the
context node is an element

e the self axis contains just the context node itself

e the descendant-or-self axis contains the context node and the descendants of the context node

e the ancestor-or-self axis contains the context node and the ancestors of the context node; thus,
the ancestor-or-self axis will always include the root node

e the document axis is used to refer an external document. It contains the root node of the external
document. This axis is always used with the name test n("document name") which specifies the
external document name. For example: document::n("dict.xml") will select the root node of a
document, named dict.zml .

e the next and the previous axes contain the first following or the first preceding sibling if it satisfies
the subsequent node/name test.
2

NOTE: The ancestor, descendant, following, preceding and self axes partition the document
(ignoring attributes): they do not overlap and together they contain all the nodes in the document.

Node Tests
The node tests are divided into two categories: node type tests and node name tests.

Here are the node type tests implemented in the system:

e text() - from the initial node-set it preserves only the text nodes.

e text(<text>) - from the initial node-set it preserves only the text nodes, which contain the <text>
as a substring of their text content. For example child::text("play") will return all text nodes
which are children of the context node and contain the token "play" in them. This is specific for
the CLaRK System?®.

<text> in each of the above uses is, in fact, a token description and could include wildcard symbols
as it is described on page 21.

e node() - this node test does not filter the initial node-set. It is used when all the nodes selected
from the axis are needed for further evaluation. For short, "*" can be used, i.e. child: :* instead
of child::node(). This is specific for the CLaRK System. -

e element () - from the initial node-set only the element nodes remain.

e attribute() - from the initial node-set only the attribute nodes remain. It is possible for the
initial nodes to contain not only attributes.

e attribute(<attributeName>) Filters only for element nodes which have an attribute named
<attributeName>. Example: child::attribute(id) will take only the element nodes, children
of the context node, which have an attribute id. This is specific for the CLaRK System.

e attribute(<attributeName> = "<attributeValue>") This node test is almost the same as the
preceding node test attribute(<attributeName>), but in addition it also has a restriction on
the value of the attribute. Example: child::attribute(id="243") will take only these element
nodes which have an attribute id set to value 243. This is specific for the CLaRK System.

LAn extension of the language allowing cross document references.

2An extension of the language aiming to speed up the process of evaluation for such specific cases.

3 Additional possibilities in the system are:

text (<mode>,<text>)

From the initial node-set preserves only the text nodes, which contain the <text> in their text content. Four modes are
available. Mode 1 - The text node content is starting with the <text>. Mode 2 - The text node contains the <text>. Mode
3 - The text node content ends with the text. Mode 4 The text node content is the same as the <text>. For example
child::text(3,"play") will return all text nodes which are children of the context node and contain the token “play” in
the end of their content.

text(<mode>,<y|n>, <"(" regular expression ")">)

From the initial node-set preserves only the text nodes, which contain text that matches the < regular expression >.
The text is tokenized by the tokenizer for the element parent of this text node or by the default tokenizer for the DTD if
the first is not presented. The second parameter is for normalization. The user must select either "y" (yes) or "n" (no).
The modes are equivalent to the previous node test. For example child::text(3,y,"play") will return all text nodes
which are children of the context node and contain the token “play” or “Play” or “pLAY” or ... in the end of their content.

e comment () - from the initial node-set only comment nodes remain.

e processing-instruction() - from the initial node-set only processing-instruction nodes remain.

The name node tests are used to filter the initial node-set for element nodes with a given name. All
other non-element nodes and element nodes with other names are removed from the set. For example,
child: :para takes only the para element node children of the context node.

Predicates

An axis is either a forward axis, or a reverse axis. An axis that only contains the context node or nodes
that follow the context node in document order is a forward axis. An axis that only contains the context
node or nodes that precede the context node in document order is a reverse axis. Thus, the ancestor,
ancestor-or-self, preceding and preceding-sibling axes are reverse axes; all other axes are forward
axes. Since the self axis always contains only one node, it makes no difference whether it is a forward
or reverse axis. The proximity position of a member of a node-set with respect to an axis is defined
in the following way: the position of the node in the node-set is ordered in document order if the axis is
a forward axis and it is ordered in reverse document order if the axis is a reverse axis. The first position
is 1.

A predicate filters a node-set with respect to an axis in order to produce a new node-set. For each node
in the node-set which is to be filtered, the predicate is evaluated with the node in question as the context
node, with the number of nodes in the node-set as the context size, and with the proximity position of
the node in the node-set with respect to the axis as the context position; if the predicate evaluates to
true for that node, the node is included in the new node-set; otherwise, it is excluded.

The predicate is evaluated as an expression and the result is converted to a boolean. If the result is
a number, the result will be converted to true if the number is equal to the proximity position of the
currently tested node and will be converted to false otherwise; if the result is not a number, then the
result will be converted as if by a call to the boolean() function. Thus a location path para[3] is
equivalent to para[position()=3]. In other words if the context node has 4 child nodes para, then only
for the third para child the predicate [3] (or [position()=3]) will be true. So the new node-set will
contain only the third para child.

Variable Bindings

One significant extension of the XPath language implemented in the system is the ability partial results
to be stored during evaluation time and used later in other expressions evaluations. This feature can be
used to optimise the processing time in expressions where sub expressions are evaluated many times under
same conditions. Another possibility is changing the current context by saving it in a variable, doing
some other computations and then restoring the context. A typical usage of this is extracting some data
from an external document on the basis of local context information (for example, a dictionary look-up)
and then proceeding the evaluation within the context The syntactic construction of the variable binding
is the following: ("{", variable name, ":=", var assignment expr,"}")*, main_expr. Here
the variable_name is an arbitrary string containing letters, var_assignment_expr and main_expr are
valid XPath expressions. In the process of evaluation the var_assignment_expr is processed first, the
result value is assigned to the variable and then the main_expr is processed. The scope of usage of the
variable value is within the following variable definition expressions (if there are such) and within the
main_expr. Variable assignments can be used at any level of sub expressions. A variable value can have
any type of the standard ones: a node-set, a number, a string or a boolean.

Abbreviated Syntax

Here are some examples of location paths using abbreviated syntax:
e para selects the para element children of the context node
e x selects all children of the context node

e text() selects all text nodes, children of the context node

e Oname selects the name attribute of the context node

e 0x selects all the attributes of the context node

e paral[1] selects the first para child of the context node

e para[last()] selects the last para child of the context node

e x/para selects all para grandchildren of the context node

e /doc/chapter[5]/section[2] selects the second section of the fifth chapter of the doc

e chapter//paraselects the para element descendants of the chapter element children of the context
node

e //para selects all the para descendants of the document root and thus selects all para elements in
the same document as the context node

e //olist/item selects all the item elements in the same document as the context node that have
an olist parent

e . selects the context node

e .//para selects the para element descendants of the context node

e .. selects the parent of the context node

e ../@lang selects the lang attribute of the parent of the context node

e paral[@type="warning"] selects all para children of the context node that have a type attribute
with value warning

e para[@type="warning"] [5] selects the fifth para child of the context node that has a type at-
tribute with value warning

e para[5] [@type="warning"] selects the fifth para child of the context node if that child has a type
attribute with value warning

e chapter[title="Introduction"] selects the chapter children of the context node that have one
or more title children with string-value equal to Introduction

e chapter[title] selects the chapter children of the context node that have one or more title
children

e employee[@secretary and Qassistant] selects all the employee children of the context node
that have both a secretary attribute and an assistant attribute

The most important abbreviation is that child:: can be omitted from a location step. In effect, child
is the default axis. For example, the location path div/para is short for child::div/child: :para.

There is also an abbreviation for attributes: attribute:: can be abbreviated to @. For example, a
location path para[@type="warning"] is short for child::para[attribute: :type="warning"] and
therefore it selects para children with a type attribute with value equal to warning.

// is short for /descendant-or-self: :node()/.

For example, //para is short for /descendant: :para and so will select any para element in the docu-
ment; div//para is short for div/descendant: : para and therefore it will select all para descendants of
div children.

A location step of . is short for self::node(). This is particularly useful in conjunction with //. For
example, the location path .//para is short for self: :node()/descendant: :para and therefore it will
select all para descendant elements of the context node.

10

Similarly, a location step of .. is short for parent: :node().

For example, ../titleis short for parent: :node() /child::title and therefore it will select the title
children of the parent of the context node.

2.1.3 XSL Transformations (XSLT)

Here the main ideas about XSLT are described and a list of the implemented and unimplemented features
is given.

XSLT offers a way to transform a document by applying transformation rules. For complete information
about the XSLT standard see ([XSLT, 1999]). Not everything stated in the standard is implemented in
the CLaRK System, and some things work differently. For the application of a transformation two things
are necessary:

1. A source document that can be any well-formed XML document.

2. A transformation document (TD) that contains the transformation rules.

There are two modes of application of a transformation. The first one is the classical one where the result
from the transformation is a new document. It is created on the basis of a source XML document and
a transformation rules applied on it. The second mode of application is a system specific one where the
transformation involves modification of the source document which represents the final result. This mode
is called a Local XSLT Transformation. The main point in the second mode is that certain points are
selected in the source document and the transformation is applied locally for each of them as if it is a
root of a document. The result from each single transformation substitutes the corresponding selection
point. When a transformation gives no result, the corresponding node (selection point) is deleted from
the source. The initial selection points are determined by an XPath expression evaluation. In the process
of transforming the user is given the possibility to apply the transformation to all selected points at once,
or to go through each of them one by one and to confirm/reject each single application.

The rest of this section will be concerned with the transformation document. In the CLaRK System
every transformation document is an XML document.

Basic Structure of the Transformation Document

As we said each transformation document in the CLaRK System is a well-formed XML document which
can be edited in the system. Some of the tag names used in transformation documents are reserved tag
names defined in the XSL standard. In order they to be separate from the user-defined tag names, they
usually may be preceded by an zsl prefix followed by a colon (:) (so a tag named template may be also
written as zsl:template) or in other sense a namespace prefix for XSL. In the following paragraphs the
syntax of the TD is given. For details of how the XSLT processor work see the next section.

The root
The root element of every TD must be marked with either the transform or stylesheet tag.
Children of the root

Child elements of the root element are marked with a template tag. Each of them contains exactly one
template rule.

Templates
Attributes of the template tag
match attribute

The match attribute contains a string that is interpreted as an XPath expression. The pattern matches
a node A in the source document iff there exists a node C' in the source document such that when the
XPath expression in the match attribute is evaluated with C as a context node, the result is a node list
and A is member of this list.

11

mode attribute

The mode attribute contains a string that determines the mode in which the XSLT processor must be in
order to use this rule. The string is completely arbitrary. The default is the empty string.

priority attribute.

The priority attribute determines the priority of the rule. Priorities are used to determine which rule
to use if more than one rule matches a given node. If no value is given for this attribute, 0 is substituted.
If more than one template still remain, the last defined template is used.

Children of the template tag

The children elements of a template element could be of any kind, but some tag names have special
meaning.

apply-template tag
This tag tells the XSLT processor to continue applying the rules.
select attribute

This attribute contains a XPath expression, that is evaluated with the node that the template has
matched as a context node. Then each node in the resulting node set is processed. If no value is given,
child: :* is assumed.

mode attribute

This attribute sets the XSLT processor in the given mode. The apply-template tag can have optional
sort children.

for-each tag

This tag applies its content to every node in the node set it selects. Its content is similar in every way to
the content of a template tag and is similarly used, but it may have sort tag children that determine
the order of processing of the nodes.

Attributes:

select attribute

A XPath that selects the nodes to be processed with the body of the for-each tag.
sort tag

The sort tag determines the key for sorting of the lists, resulting from XPath expression. When no
such tag occurs, the list is processed in document order. Otherwise, it is first sorted. The first sort child
determines the first key, the second sort child the second key and so on.

select attribute

This attribute holds an XPath expression which is evaluated for every node in the list and is then
converted either to string or to number. It determines the key value. The default value is ".".

data-type attribute

This attribute determines whether the key is converted to a string or to a number. It can have the values
a string or a number. The default is string.

order attribute

Specifies the order of the resulting list. Valid values are ascending and descending. Default is
ascending.

The sort tags may appear as children of for-each and apply-templates tags. Elsewhere it is considered
as a normal tag without special meaning.

if tag

This tag contains an XPath expression that is evaluated as a boolean. If the answer is true, then the
processor applies the content of the tag to the current node. Otherwise it does nothing.

12

test attribute

The XPath expression that is evaluated to boolean. It behaves exactly as if the XPath expression was
the following expression boolean(original_expression).

copy-of tag

This tag contains an XPath expression, that is evaluated either to a list of nodes, or to a boolean, to a
number or a string. In the first case each of the selected nodes together with its subtree is attached to
the result. In the other cases the XPath is converted to string and is then added to the result tree.

select attribute
Selects the nodes (or data) to be copied.
copy tag

This tags copies the current node and its attributes. The subtree is not copied. No attributes are defined
for this tag.

value-of tag

This tag behaves like copy-of tag with select attribute converted to string(original_expression).
select attribute

Selects the nodes (or data) to be converted and copied.

These are the special meaning tags. Every other tag or character data is directly copied to the result
tree.

XSLT processor

The XSLT processor takes as input a source document (SD) and a transformation document (TD) and
returns a new document that is called the result document (RD). Its works as follows :

1. Finds the template that matches the document element of the SD and has mode "" and highest
priority.

2. Applies that template.

In the template there may be "apply-template" tags that run the processor recursively. Every node that
has no special meaning is attached to the result tree in the right position node (RP). At first this RP is
the document node of the RD itself. For more information see the examples below.

As one may see, the resulting document, may not have only one root. To avoid this, only the first child
of the Document node is actually used. This is not the case when you apply the transformation inside
the document rather than to the entire document.

Examples
The “books” example.

Lets assume that we have a set of “books”, and every “book” tag has zero or more “author” tags. We
want to extract all the authors and put them in a new document. The following XSLT document will
do the job.

Example:

<books>
<book><title>Alice in Wonderland</title>
<author>Lewis Carrol</author></book>
<book><title>Creatures of Light and Darkness</title>
<author>Roger Zelazny</author></book>
<book><title>The Chronicles of Amber </title>
<author>Roger Zelazny</author></book>
</books>

13

Note: We will use the "//" for comments. They are not part of the TD.

<transform> <template match="*"> // the only template that matches every tag
<authors> // this tag has no special meaning
<for-each select="child::book/child::author">
// for every author of every book
<sort/> // sort the authors
<copy-of select="."/> // copy its "author"s tags
</for-each> // end cycle
</authors>
</template> // end template
</transform> // end the TD

The result will be

<authors>
<author>Lewis Carrol</author>
<author>0senova</author>
<author>Popova</author>
<author>Roger Zelazny</author>
<author>Roger Zelazny</author>
<author>Simov</author>
</authors>

As one may see, we will have authors that are mentioned more than once in the RD. Lets fix this! The
new SD will be the old RD, and the transformation is this :

<transform>
<template match="authors"> // match the root
<copy> // copy the root
<apply-templates/> // apply-templates to its children

</copy>
</template>
<template match="author"> // match every author
<if test="(. != following-sibling::author[1])">
// check if it’s the same as its next sibling
// note that the authors are sorted
<copy-of select="."/>
</if>
</template>
</transform>

And the final result is

<authors>

<author>Lewis Carrol</author>
<author>0senova</author>
<author>Popova</author>
<author>Roger Zelazny</author>
<author>Simov</author>

</auto hrs>

Besides XSLT, the CLaRK System also provides additional means for transformations of a document via
the XPath Transformation tool. It is described in another part of the documentation.

14

2.2 Cascaded Regular Grammars

The CLaRK System is equipped with a finite-state engine which is used for several tasks in the system.
In this section we present the use of this engine for cascaded regular grammars over XML documents
along the lines described in [Abney, 1996]. The general idea underlaying cascaded regular grammars is
that there is a set of regular grammars. The grammars in the set are in particular order. The input of
a given grammar in the set is either the input string if the grammar is first in the order or the output
string of the previous grammar. Another feature of cascaded grammars is that each grammar tries to
recognise only a particular category in the string but not the whole string. Before going into details of
how to apply grammars in the CLaRK System some basic notions about regular expressions are given.

2.2.1 Regular Expressions and Grammars

This is not a completely formal presentation of the topic. Our purpose here is to clarify the terminology
that will be used further in the document.

Letter

We call a letter each designate symbol. Symbol here is understood in a general way and not as a symbol
code in the computer. Symbol can be a word from a natural language as ’love’ in English.

Alphabet
An alphabet is a set of letters.
Word

A word is a finite sequence of letters over some alphabet. The empty sequence of letters will be called the
empty word and we will write it as e. The set of all words over the alphabet A is denoted by Ax. A basic
operation over words is concatenation — ®. The concatenation is a binary operation. The concatenation
of two words is the word which consist of the letters of the first word followed by the letters of the second
word. For example:

grand ® mother = grandmother
Sometimes we simplify the notation and we write 1 for the letter 1 and for the word that consists of this
letter.
Language
A language is a set of words over some alphabet.
Regular expression

A reqular expression over an alphabet is an expression that can be interpreted as a set of words over
this alphabet. This set of words is the language that is recognised by the regular expression. Before
giving the syntax and semantics of the regular expressions we will enrich our formal inventory with letter
descriptions. A letter description is an expression [d which denotes a set of letters from a given alphabet.
Each letter from a given alphabet is a description of itself. The set of letters denoted by the letter
description Id is represented as A(ld), i.e. [a-z], \p.

Syntax of the regular expressions:

1. (Basic case) If Id is a letter description, then Id is a regular expression.

2. (Concatenation) If r and 7y are regular expressions, then (r1,rs) is a regular expression.

3. (Union) If and ry are regular expressions, then (r; | 72) is a regular expression.
4. (Intersection) If r; and ry are regular expressions, then (r; ! ro) is a regular expression.
5. (Subtraction) If r1 and ro are regular expressions, then (r; — 73) is a regular expression.
6. (One or zero) If r is a regular expression, then r? is a regular expression.

7. (Zero or more)(Kleene star) If r is a regular expression, then r* is a regular expression.

8. (One or more)(Kleene plus) If r is a regular expression, then r+ is a regular expression.

9. (Negation) If r is a regular expression, then ~r is a regular expression.

15

Semantics of the regular expressions:

The semantics of the regular expressions is defined by an interpretation function L(.) which maps each
regular expression into the set of words denoted by this regular expression. The function L(.) is total
and meets the following equations:

1. (Basic case)

If Id is a letter description, then L(ld) = {l |l € A(ld)}
Thus each letter description Id denotes the set of words corresponding to the letters described by Id.
2. (Concatenation)

If ry and ry are regular expressions, then L((ry,72)) = {w; ® ws | w1 € L(r1) and wy € L(r2)}

Thus the interpretation of a concatenation expression is the set of words so that each word in the set is a
concatenation of two words, where the first word is from the interpretation of the first regular expression
and the second one is from the interpretation of the second expression.

3. (Union)
If ry and ry are regular expressions, then L((ry | r2)) = {w | w € L(r1) or w € L(rs)}

Thus the interpretation of a union expression is the set of words so that each word in the set is either
from the interpretation of the first regular expression or from the interpretation of the second expression.

Another way to define the interpretation of a union expression is by L((ry | r2)) = L(r1) U L(r2).
4. (Intersection)
If r; and ro are regular expressions, then L((r; ! r2)) = {w | w € L(ry) and w € L(ry)}

Thus the interpretation of an intersection expression is the set of words so that each word in the set is
at the same time in the interpretations of the both regular expressions.

5. (Subtraction)
If r; and ro are regular expressions, then L((r; — r9)) ={w | w € L(r;) and w & L(r2)}

Thus the interpretation of a subtraction expression is the set of words so that each word in the set is in
the interpretation of the first regular expression, but not in the interpretation of the second one.

6. (One or zero)
If r is a regular expression, then L(r?) = {e} U L(r).
Thus the interpretation of an one-or-zero expression is the interpretation of the expression united with
the set of the empty word.
7. (Zero or more)(Kleene star)

If r is a regular expression, then L(rx) = {e} U{w; ® w2 ® ... w, | wr € L(r) and n > 0 is a natural
number }.

Thus the interpretation of a zero-or-more expression is the set of the empty word united with the set of
all words in the interpretation of the expression 7 and all words that are concatenations of two or more
words from the interpretation of the expression r.
8. (One or more)(Kleene plus)

If r is a regular expression, then L(r+) = {w; ®w2®...w, | w; € L(r) and n > 0 is a natural number
1.

Thus the interpretation of an one-or-more expression is the set of all words in the interpretation of the
expression r and all words that are concatenations of two or more words from the interpretation of the
expression 7.

9. (Negation)

16

If r is a regular expression, then L("r) = {w | w &€ L(r)}

Thus the interpretation of a negation expression is the set of all words which are NOT in the interpretation
of the regular expression r.

Some simplifications of the syntax are allowed. When only the operations concatenation and union are
used, the internal brackets can be omitted. For instance, ((a,b), (¢,d)) can be written as (a, b, ¢, d).

The set of words in the interpretation of a regular expression is called the language recognised by the
expression. Each language that can be recognised by a regular expression is called a regular language.
Notice that different regular expressions can recognise the same language. Also a word can belong to
different, languages.

Regular Grammars

A regular expression can be used to determine whether a given word belongs to the language recognised
by the expression, but sometimes we want to recognise the internal structure of a word. This can be done
by segmenting the word in subwords and by assigning some categories to these subwords. For instance,
let we write a regular expression for a recognition of dates in the format dd.mm.yyyy (10.11.2002):

¢ Co, (11213141516171819)) | C (1]2), (0l11213141516171819)) | (3,(011)))

>

s

((0,(11213141516171819)) | (1,(01112)))

B

(C (11213141516171819), (0111213141516171819)%))

This regular expression successfully recognises 10.11.2002 as a word over the alphabet {0, 1, 2, 3, 4, 5,
6,7,8,9,.}. It also accepts some words that are not dates as 31.02.1999, but this is not important in
our example.

Sometimes we would like to segment the date in a day part, a month part and a year part. In order to
do this we use rules of the following kind:

C ->R

where R is a regular expression and C is a category of the words recognised by R. We can think of C as
a name of the language recognised by R.

A regular grammar is a set of rules.

A regular grammar works over a word (called input word) and it tries to segment this word in a sequence
of subwords in such a way that each of these subwords in recognised by a regular expression of the
rules in the grammar. The result of the grammar’s work is a new word representing the sequence of the
categories assigned to each subword of the input word. The segmentation of the input word and the
result word of categories is called an analysis with respect to the grammar. For instance, let us represent
the above regular expression as a grammar:

-> ((0, (11213141516171819)) | ((112), (0l1112(31415[6[71819)) | (3,(011)))

-> .
-> ((0,(11213141516171819)) | (1,(01112)))
-> (((11213141516171819), (0111213141516171819)%))

<~ =2 X O

Then for the date 10.11.2002 some of the possible analyses are:

D R M R Y
10 . 11 . 2002

17

10 . 11 . 2002
Y R Y R Y
10 . 11 . 2002
DR Y Y R Y
10 . 1 1 . 2002

where the categories are written above the corresponding subwords. As it is obvious from the example
processing, this way of defining a grammar is not very useful because it produces too many wrong
analyses. For a better processing with such kind of grammars one would like to be able to impose
additional constraints over the analyses produced by the grammar. In the CLaRK System we made two
extensions:

e cascaded application of regular grammar [Abney, 1996]; and

e extension of the rules with descriptions of the left and the right contexts of a subword recognized
by the regular expression of the rule.

Cascaded regular grammar [Abney, 1996] is a sequence of regular grammars defined in such a way that
the first grammar works over the input word and produces an output word of categories, the second
grammar works over the output word of the first grammar, produces a new word of categories and so
on. If one of the grammars in the sequence can produce more that one analysis, then these analyses are
considered one by one in producing the analyses of the next grammar. The process of application of
the cascaded regular grammar stops when all possibilities are finished. The output of the last grammar
constitutes the analyses made by the cascaded regular grammar.

Example:

Let us take the previous grammar as a first grammar:

-> ((0, (11213141516171819)) | ((112), (0l1112(31415(6[71819)) | (3,(011)))

<~ =2 ™ O

-> .
-> ((0,(1121314l516171819)) | (1,(01112)))
-> (C (11213141516171819), (01112131415(6[71819)*))

And as a second grammar the following grammar with one rule:
Date -> (D,R,M,R,Y)

Applying the second grammar to the possible analyses of the first grammar, the only analysis that can
be constructed is:

Date
D R M R Y
10 11 2002

and all other analyses from the first grammar will be ruled out as unacceptable.

One relaxation of the application scenario is that a given regular grammar in the sequence need not
necessary recognise all letters in the input word. This means that the segmentation of the input word
is such that the grammar recognises some of the subwords, but not all. An additional requirement
suggested by [Abney, 1996] is the so-called longest match, which is a way to choose one of the possible

18

analyses for a grammar. The longest match strategy requires that the recognised subwords from left to
right have the longest length possible. Thus the segmentation of the input word starts from left and tries
to find the first longest subwords that can be recognised by the grammar and so on to the end of the
word. The output word in this case consists of a sequence of unrecognised subwords of the input word
and the categories of the recognised subwords in the order in which the subwords are found in the input
word. In the CLaRK System we have implemented several more match modes: shortest match, Any Up
and Any Down which allows the user to choose the most appropriate strategy for the task at hand. The
shortest match requires that the recognized subwords must have the least possible length. The other two
modes involve a kind of backtracking approaches in which decisions taken during recognition phase are
reconsidered later. In the case of Any Up mode, the recognition of a subword starts with recognition of
the shortest subword. In case of subsequent matching failure, the recognizer returns to this point and
takes a little longer subword (if possible) and proceeds again with the rest of the input word. In the case
of Any Down, the recognizer starts with the longest subword and reduces its length if needed.

The second extension of the regular grammars realised in the CLaRK System concerns the description
of the left and the right context of a given subword recognised by the regular expression of a rule. Thus
the rules in the grammar will have the format:

C->LC : R : RC
where C is the category, LC is a regular expression describing the left context of the words recognisable
by the rule, R is a regular expression describing the set of words recognisable by the rule, RC is a regular
expression describing the right context of the words recognisable by the rule. The regular expressions LC
and RC can be empty and then there are no constraints over the left and the right context. We envisage
the use of such rules for tasks as sentence boundary recognition where one has to take a look at the word
after the full stop in order to determine whether this full stop is marking the end of the sentence or not.

The user can control the strategy for applying each of these rules by specifying longest or shortest match
for them.

To demonstrate this kind of rules we rewrite the above grammar in the following way:

G1l:
M -> . : ((0,(112]1314I516171819)) | (1,(01112)))

(the left context is a dot and the right context is a dot)

G2:
D -> (Co0, (11213141516171819)) | ((112), (0l11213141516171819)) | (3,(011)))

(the left context is empty)
Y -> . (C (11213141516171819), (0111213141516171819)*))
(the right context is empty)

G3:
R >

(both contexts are empty)

G4:
Date -> (D,R,M,R,Y)

19

(both contexts are empty)
Longest match is required in all rules of this grammar although in some it is not obligatory.

The analysis will be in four steps:

Stepl:
M
10 . 11 . 2002
Step2:
D M Y
10 . 11 . 2002
Step3:
D R M R Y
10 . 11 . 2002
Step4:
Date
D R M R Y
10 11 2002

In the next section we describe how cascaded regular grammars can be applied to XML documents.

2.2.2 Cascaded Regular Grammars in the CLaRK System

The basic the CLaRK mechanism for linguistic processing of text corpora is the regular grammar pro-
cessor. The application of the regular grammars to XML documents is connected with the following
problems:

e how to treat the XML document as an input word for a regular grammar;
e how should the returned grammar category be incorporated into the XML document; and

e what kind of ‘letters’ to be used in the regular expressions so that they correspond to the ‘letters’
in the XML document.

The solutions to these problems are described in the next paragraphs.

First of all, we accept that each grammar works on the content of an element in an XML document.
The content of each XML element (excluding the EMPTY elements on which regular grammar cannot
be applied) is either a sequence of XML elements, or text, or both.

When the content of the element to which the grammar will be applied is a text we have two choices:

1. we can accept that the ’letters’ of the grammars are the codes of the symbols in the encoding of
the text; or

2. we can segment the text in meaningful non-overlapping chunks (or in usual terminology tokens)
and treat them as ’letters’ of the grammars.

20

In the CLaRK System we have adopted the second approach. Each text content of an element is first
tokenized by a tokenizer* and is then used as an input for grammars. Additionally, each token receives
a unique type. For instance, the content of the following element

<s>John loves Mary who is in love with Peter</s>
can be segmented as follows:

"John" CAPITALFIRSTWORD

"on SPACE
"loves" WORD
"o SPACE
"Mary" CAPITALFIRSTWORD
"o SPACE
"who! WORD
"on SPACE
"ig" WORD
"on SPACE
"in" WORD
"on SPACE
"love" WORD
"on SPACE
"with" WORD
"on SPACE

"Peter" CAPITALFIRSTWORD

Here on each line in double quotes one token from the text followed by its token type is presented.

Therefore when a text is considered as an input word for a grammar it is represented as a sequence
of tokens. How can we refer now to the tokens in the regular expressions in the grammars? The most
simple way is by tokens. We decided to go further and to enlarge the means for describing tokens with the
so called token descriptions which correspond to the letter descriptions in the above section on regular
expressions. In the token descriptions we use strings (sequences of characters), wildcard symbols % for
zero or more symbols, # for one or more symbols, @ for zero or one symbol, and token categories. Each
token description is matching exactly one token in the input word.

We divide the token descriptions into two types - those that are interpreted directly as tokens and others
that are interpreted as token types first and then as tokens belonging to these token types.

The first kind of token descriptions is represented as a string enclosed in double quotes. The string is
interpreted as one token with respect to the current tokenizer. If the string doesn’t contain a wildcard
symbol then it represents exactly one token. If the string contains the wildcard symbols # or % then it
denotes an infinite set of tokens depending on the symbols that are replaced for the wildcard symbol.
This is not a problem in the system because the token description is always matched by a token in the
input word. In a similar way the other wildcard symbol is treated, but zero or one symbol is put in its
place. One token description may contain more than one wildcard symbol.

Examples:

"Peter" as a token description could be matched only by the last token in the above example.
"lov#" could be matched by the tokens "loves" and "love"

"lov@" is matched only by "love"

"@" is matched by the token corresponding to the intervals " "

"#h#" is matched by "John" and to "who"

4There are built-in tokenizers which are always available and there is also a mechanism for defining new tokenizers by
the user. Tokenizers are described below.

21

"#" is matched by any of the tokens including the spaces.

The wildcard symbols #, %, @ and the double quote symbols " can be used in the token expressions by
using the symbol ~ as a escape symbol. Thus "~#" matches the token "#". The symbol ~ is represented
as =~

The second kind of token descriptions is represented simply as a string preceded by the dollar sign (’$’)
and which is not enclosed in double quotes or angle brackets - < >. The string is either a token type
or a set of token types if it contains wildcard symbols. Then the type of the token in the input word is
matched by the token types denoted by the string. If the token type of the token in the text is denoted
by the token description, then the token is matched to the token description.

Examples:

$WORD is matched to "loves", "who", "is", "in", "love", "with"

$CAP# is matched to "John", "Mary" and "Peter"

#$WORD is matched to "John", "loves", "Mary", "who", "is", "in", "love", "with", and "Peter"
$# is matched to any of the tokens including the spaces.

Variables in Token Descriptions

The variables are an extension of the token description language. Each variable describes some sub-
string in a token when initialised for a first time, then matches to the same substring in the same token,
or in some next tokens. Using this mechanism of initialization and value checking the variables can
ensure equality between substrings in one or more tokens in the input word. In this way such phenomena
as agreement or vocal harmony can be expressed in the grammar.

Each variable consists of the symbol & followed by a single Latin letter. The scope of a variable is the
grammar. The variable can be used in the return mark-up and in this case the value of the variable is
copied in the return mark-up. If the variable doesn’t have a value then its name is copied to the return
mark-up together with the & sign.

Each variable has positive and/or negative constraints over the possible values. They are given by lists
of token descriptions (they can contain wildcard symbols, but not other variables). These constraints,
in the process of compilation, are represented as a finite state automaton and the variable is substituted
with it. In this way a variable can be evaluated only if the token contains a substring that can be
recognized by the variable automaton.

Because the regular language that CLaRK System supports includes negation, the variables can occur in
positive or negative contexts. A variable in a positive context always is traversed. Then it is initialized if
it doesn’t have a value or if the variable already has a value, this value is checked. In a negative context
it can happen that a variable is not traversed. If it is traversed it again is initialized if it doesn’t have a
value or if the variable already has a value, this value is checked.

Defining the scope of the variables to be the whole grammar allows for potential undesirable interactions
between different uses of the same variables after the compilation of the grammar. Each grammar
is compiled into a Finite State Automaton (FSA). The compilation consists of determinisation and
minimization of a FSA constructed from the regular expressions. During the compilation the automaton
for each occurrence of a variable can be merged with the rest of the automaton of the whole grammar.
During such merge two different occurrences of the same variable can be ordered in a way which is
missing in the original grammar.

“a&AbeCb” “acb&Ab&Ab” “adb&Ab&Ab” &A — ucn|udn

Here are some examples: “A&N&G”, “Nc&N&G”. These token descriptions can be used in a rule to
ensure the agreement in number and gender between an adjective and a noun.

Now we turn to the case when the content of a given element is a sequence of elements. For instance the
above sentence can be represented as:

<s>

22

<N>John</N> <V>loves</V> <N>Mary</N> <Pron>who</Pron> <V>is</V>
<P>in</P> <N>love</N> <P>with</P> <N>Peter</N> </s>

At first sight the natural choice for the input word is the sequences of the tags of the elements: <N> <V>
<N> <Pron> <V> <P> <N> <P> <N>, but when the encoding of the grammatical features turns out to be
more sophisticate as the following:

<s>
<w g="N">John</w>
<w g="V">loves</w>
<w g="N">Mary</w>
<w g="Pron">who</w>
<w g="V">is</w>
<w g="P">in</w>
<w g="N">love</w>
<w g="P">with</w>
<w g="N">Peter</w>
</s>

then the sequence of tags is simply <w> <w> ..., which is not acceptable as an input word. In order to
solve this problem we substitute each element with a sequence of values. This sequence is determined
by an XPath expression that is evaluated taking the element node as the context node. The sequence
defined by an XPath expression is called element value in the CLaRK System. Thus each element in
the content of the element is replaced by a sequence of text elements. For the above example a possible
element value for tag w could be: attribute::g. This XPath expression returns the value of the attribute
g for each element with tag w. Therefore a grammar working on the content of the above sentence will
receive as an input word the sequence "N" "y" "N" "Pron" "V'" "P" "N" "P" "N" Besides such text
elements, by using of XPath expressions one can point to an arbitrary node in the document, so that
the element value is determined differently. At the moment the nodes returned by an XPath expression
are processed in the following way:

1. if the returned node is an element node, then the tag of the node is returned with the additional
information that this is a tag;

2. if the returned node is an attribute node, then its value is tokenised by an appropriate tokenizer.

3. if the returned node is a text node, then the text is tokenised by an appropriate tokenizer.

Within the regular expressions we use the angle brackets in order to denote the tags. We can use wildcard
symbols in the tag name. Thus

<p> is matched with a tag p;
<@> is matched with all tags with length one.
<#> is matched with all tags.

The last problem when applying grammars to XML documents is how we to incorporate the category
assigned to a given rule. In general we can accept that the category has to be encoded as XML mark-up
in the document and that this mark-up could be very different depending on the appropriate DTD we
are using. For instance, if we have a simple tagger (example is based on [Abney, 1996]):

"the"|"a" -> Det
"telescope'|"garden" |"boy" -> N
"slow"|"quick"|"lazy" -> Adj
"walks"|"see"|"sees" |"saw" -> V
"above" |"with"|"in" -> Prep

23

Then one possibility for representing of the categories as XML mark-up is by tags around the recognised
words:

the boy with the telescope

becomes
<Det>the</Det><N>boy</N><Prep>with</Prep><Det>the</Det><N>telescope</N>

This encoding is straightforward but not very convenient when the given wordform is homonymous like:

"move" -> V
"move" -> N

In order to avoid such cases we decided that the category for each rule in the CLaRK System is a
custom mark-up that substitutes the recognised word. Since in most cases we would also like to save the
recognised word, we use the variable \w for the recognised word. For instance, the above example will
be:

"the"|["a" -> <Det>\w</Det>

"telescope'|"garden" |"boy" -> <N>\w</N>
"slow"|"quick"|"lazy" -> <Adj>\w</Adj>
"walks"|"see"|"sees" |"saw" -> <V>\w</V>
"above" |"with"|"in" -> <Prep>\w</Prep>

The mark-up defining the category can be as complex as necessary. The variable \w can be repeated as
many times as necessary (it can also be omitted). For instance, for "move" the rule could be:

"move" -> <w aa="V;N">\w</w>

2.3 Unicode for multilingual text representation (Tokenization)

The representation of the XML documents inside the system is based on UNICODE. This allows the
representation of texts in different languages in a natural way. In XML each text nodes is considered as a
sequence of letters. In order to treat these text elements XML considers the content of each text element
as a whole string that is unacceptable for corpus processing where one usually requires to distinguish
wordforms, punctuation and other tokens in the text. In order to cope with this problem the CLaRK
System supports a user-defined hierarchy of tokenizers. At the very basic level the user can define a
tokenizer in terms of a set of token types. In this basic tokenizer each token type is defined by a set
of UNICODE symbols. Above this basic level tokenizers the user can define other tokenizers for which
the token types are defined as regular expressions over the tokens of some other tokenizer, so called
parent tokenizer. In the system tokenizers are used in different processing modules. For each tokenizer
an alphabetical order over the token types is defined. This order is used for operations as comparing two
tokens, sorting and similar. This order can easily be changed by the user.

Sometimes in different parts of one document the user will want to apply different tokenizers. For in-
stance in a multilingual corpus the sentences in different languages will need to be tokenized by different
tokenizers. In order to allow this functionality, the system allows for attaching tokenizers to the docu-
ments via the DTD of the document. To each DTD the user can attach a tokenizer which will be used
for tokenization of all textual elements of the documents corresponding to the DTD. Additionally the
user can overwrite the DTD tokenizer for some of the elements attaching to them other tokenizers.

24

2.4 Constraints

Several mechanisms for imposing constraints over XML documents are available. The constraints cannot
be stated by the standard XML technology. The following types of constraints are implemented in the
CLaRK: 1) regular expression constraints - additional constraints over the content of given elements
based on a document context; 2) number restriction constraints - cardinality constraints over the content
of a document; 3) value constraints - restriction of the possible content or parent of an element in
a document based on a context. The constraints are used in two modes: checking the validity of a
document regarding a set of constraints; supporting the linguist in his/her work during the building of a
corpus. The first mode allows the creation of constraints for the validation of a corpus according to given
requirements. The second mode helps the underlying strategy of minimisation of the human labour.

General syntax of the constraints in the CLaRK system is the following:
(Selector, Condition, Event, Action)

where the selector defines in which node(s) in the document the constraint is applicable; the condition
defines the state of the document when the constraint is applied. The condition is stated as an XPath
expression which is evaluated with respect to each node selected by the selector. If the evaluation of the
condition gives an approving result then the constraints are applied; the event defines some conditions of
the system when this constraint is checked for application. Such events can be: the selection of a menu
item, the pressing of key shortcut, some editing command as inserting a child or a parent and similar;
the action defines the way of the actual application of the constraint. .

At the moment the following constraints are implemented in the system:
Regular Expression Constraints

In this kind of constraints the action is defined as a regular expression which is evaluated over the
content of each element selected by the selector. If the word formed by the content of the element can
be recognized as belonging to the language of the regular expression then the constraint is evaluated as
true. Otherwise it is evaluated as false and an appropriate message is given. The user can navigate on
the valid/invalid nodes for the constraint. The content of each element is treated as the content of the
element when a grammar is applied to it (see above).

These constraints are useful when the content of an element is text or MIXED and the user wants to
impose some constraints over the content or when the DTD defines the content of some kind of elements
as a disjunction and the different disjuncts are realised in different contexts which can be determined by
a XPath expression. In this way the regular expression constraints can be used for imposing restrictions
in addition to these in the DTD making them more specific on the basis of the surrounding context. This
is very useful, for example, when someone is compiling a dictionary. Usually the DTD defines some very
general content model for the elements, but in a concrete lexical entry a more specific model is realized.
For example, let us assume that the <Paradigm> element in a lexical entry is defined as a disjunction of
the following kind:

<!ELEMENT Paradigm ((sg,pl)|(pres,past,participle))>
The first part of the definition concerns the paradigm of nouns and the second - the paradigm of verbs.
The information about the part of speech is presented in another element with tag POS and thus it is
not, available to the DTD validator. In order to support the consistency, we could write two constraints,

which to express the dependency between the contents of the element P0OS and the element Paradigm:

Selector: /descendant::Paradigm[preceding-sibling::P0S/text()="N"]
Action: (sg,pl)

Selector: /descendant::Paradigm[preceding-sibling::P0S/text()="V"]
Action: (pres,past,participle)

25

The first constraint is satisfied by each Paradigm element, whose neighbour - POS element preceding it,
has textual value N and thus the lexical entry is of a noun and the content of the element Paradigm is a
sequence of one sg element and one pl element. Similarly for the second constraint.

Number Constraints

This kind of constraints are defined in terms of an XPath expression, which is evaluated to a list of
nodes, and MIN and MAX values where MIN and MAX are natural numbers. The constraint is satisfied
(evaluated as true) if the length of the list returned by the XPath expression is between MIN and MAX.
The two border values can be either fixed (static) or dynamic (dependent on the context). In the latter
case, the values are determined by XPath expressions which at application time are evaluated on the
initially selected contexts. When a border value is not specified, the corresponding constraint does not
set an upper/lower restriction.

This kind of constraints can be useful for checking equal number of nodes of different type within a given
context. For instance, let us suppose that for a finite set of words of the language a™b" it is necessary to
construct an XML representation. Then we can define an element <word> in the following way:

<!ELEMENT word (a*,bx)>

By regular expressions, however, it is impossible to specify that the a® are always the same number as
the b°. It becomes very simple with number restriction constraints:

Selector: /descendant: :word
Min: count(child::a)
Max: count(child::a)

Action: Min <= count(child::b) <= Max

and similar constraint for the number of a®.

The number constraints are very appropriate for stating general constraints over the whole document.
Such constraints include arbitrary complex XPath expressions in their predicate part and otherwise they
always select the root note if the predicate is satisfied in the document and require that there is exactly
one such element.

Value Constraints

These constraints determine the possible children or the parent of an element in a document. These
constraints apply when the user enters a new child or a new parent of an element. In both cases a list of
possible children or parents are determined by the DTD, but depending on the context in the document
an additional reduction of these lists is possible. In case the only possible child of an element is a text
then these constraints determine the possible text values for the element. Let us take as an example the
following definitions in a DTD:

<!ELEMENT np ((np, pp) |
<!ELEMENT vp ((vp, pp) |

Vv Vv

ced)
ced)

which in part define that a PP can be attached to a NP or a VP. Then let us take the partially marked-up
sentence:

<s> <np>The man</np><v>saw</v><np>the boy</np><pp>in the
garden</pp> </s>

For the PP "in the garden" there are still two possibilities for a parent - a NP or a VP. But if the user
enters a new information then "saw the boy" is a VP then for the PP "in the garden" there is only one
possible parent - a VP. This information can be encoded in the system as a value constraint for the parent
of PP elements. In future versions of the system we envisage such kind of constraints to be compiled from
grammar represented in a grammar development environment.

26

In the next paragraphs we present constraints of type "Some Children". This kind of constraints deal
with the content of some elements. They determine the existence of certain values within the content of
these elements. A value can be a token or an XML mark-up and the actual value for an element can be
determined by the context. Thus a constraint of this kind works in the following way: first it determines
to which elements in the document it is applicable, then for each such element in turn it determines which
values are allowed and checks whether in the content of the element some of these values are presented
as a token or an XML mark-up. If there is such a value, then the constraint chooses the next element. If
there is no such a value, then the constraint offers to the user a possibility to choose one of the allowed
values for this element and the selected value is added to the content as a child in a certain position.
Additionally, there is a mechanism for filtering of the appropriate values on the basis of the context of
the element.

This kind of constraints is very useful for filling of the content of elements with predetermined set of
values as, for example, in dictionary construction. Within BulTreeBank, we use these constraints for
manual disambiguation of morpho-syntactic tags of wordforms in the text. For each wordform we encode
the appropriate morpho-syntactic information from the dictionary as two elements: <aa> element which
contains a list of morpho-syntactic tags for the wordform separated by a semicolon, and <ta> element
which contains the actual morpho-syntactic tag for this use of the wordform. Obviously the value of <ta>
element has to be among the values in the list presented in the element <aa> for the same wordform.
"Some Children" constraints are very appropriate in this case. Using different conditions and filters
on the values we implemented and used more than 50 constraints during the manual disambiguation of
wordforms in the “golden standard” of the project. It is important to mention that when the context
determines only one possible value for some word, it is added automatically to the content of <ta>
element and thus the constraint becomes a rule.

Similar constraints are constraints of the type "Some Attributes" which work on the values of some
attribute.

Here follows an example application of the value constraints of type "Some Children" which support the
user in the process of work. The task in the example is a creation of a small dictionary, given a list
of words. In the result structure, for each word the Part-of-Speech characteristic must be determined
and a set of specific features depending on the part of speech. Thus, for each POS characteristic a
different, structure frame will be used. For simplicity here we will restrict the POS possibilities to
three: article, noun and verb. The specific features are as follows: article - (type: definite/indefinite);
noun - (gender: masc/fem/neu; number: singular/plural; case: acc/dat); verb - (tense: present/past;
transitivity: trans/intrans).

In XML terms, the word structure definition is the following;:
<!ELEMENT word (wf , pos , (gender , number , case | tense , transitivity | type))>
Here wf contains the wordform and pos contains the part of speech characteristic.

The supporting task of the value constraints here is to follow the user’s activities and whenever s/he
determines the POS characteristic of a word the corresponding structure frame is automatically created.
In the next step, the user will be asked to supply values for the corresponding features by interacting
with a convenient graphical interface.

The constraints here (all of type "Some Children") will be split into two sets. The first set contains
constraints working in automatic insertion mode which on the basis of certain user decisions build the
frames structures. The constraints in the second set require the user to select appropriate values for
certain features.

The decision-requiring constraints are defined as:
target: //pos[not(child::text())]
// for all not specified POS characteristics ...

source: "article", "noun", "verb"
// select a possible value from the list

27

target: //typelnot(child::text())]

// for all not specified type characteristics ...
source: "definite","indefinite"

// select a possible value from the list

target: //gender[not(child::text())]

// for all not specified gender characteristics ...
source: "masc","fem",'"neu"

// select a possible value from the list

target: //tense[not(child::text())]

// for all not specified tense characteristics ...
source: '"singular",'"plural"

// select a possible value from the list

The automatic decision making constraints are defined as:

target: //word[child::pos[text() = "article"]
// all words having P0S article ...
<type/>
// there must be an element \markup{type} inserted

target: //word[child: :pos[text() = "noun"]
// all words having POS noun ...
<gender/>
// there must be an element \markup{gender} inserted

target: //word[child::pos[text() = "noun"]
// all words having POS noun ...
<number/>
// there must be an element \markup{number} inserted

Note: Several more analogous constraint definitions must be created to cover all the cases.

Once defined, the constraints are put in a group and the whole group is applied. The definition of the
constraints makes the application of certain constraints dependent on the application of others. Only
the constraints for which the preconditions for application are available are executed. All the rest are
standing in the background and waiting for their turn.

Having started the group application, the selection stops on the first word and the user is asked to specify
the POS. Having done that the appropriate frame is automatically constructed and the selection is moved
to the first unresolved feature in it. Having resolved all features within the current frame for which there
is no automatic insertion rule, the selection is moved to the next word and the system expects again user
decision and so on. Thus, the whole process of application consists of two types of phases: a user decision
phase and a propagation phase of the consequences of the user decisions made on previous phases. In
this way, there is no user interaction as long as non-trivial decisions have to be taken.

3 The CLaRK System

At the heart of the CLaRK System is the XML technology as a set of utilities for structuring, manipula-
tion, management and visualization of data. We started with basic facilities for creation, editing, storing
and querying of XML documents and developed further this inventory towards a powerful system for
processing not only of single XML documents but of an integrated set of documents and constraints over
them. The main goal of this development is to allow the user to add to the XML documents a desirable

28

semantics reflecting the user’s goals. Inside the system, the core structure of the representation of the
XML documents follows the DOM Levell specification - see [DOM, 1998]. When an XML document is
imported (or created) in the system it is stored in this internal representation and in this way the user
has access to it only via the facilities of the system. This restriction allows us to support the consistency
of the data represented in the system. We plan to exploit this feature of the system even further in future
for automatic support of construction of XML documents that reflect the content of a corpus or a set of
documents.

The CLaRK System includes the following components: XML Engine, XML Editor, Internal Documents
Database, Document Transformation, Tokenizer, Constraints Engine, XPath Engine, Regular Grammar
Engine, MultiTool Processor. In this section we describe each of these components in turn. Some of
these components are not directly accessible by the user and they are used in the other components to
support the corresponding functionality. The most important components of this type are the XPath
Engine and the Regular Grammar Engine. The first is a module which evaluates XPath expressions over
a document and the second is a module dealing with compilation of regular expressions into finite-state
automata, determinization and minimization of the compiled automata.

3.1 XML Engine

XML Engine offers a full set of facilities for processing XML documents. This includes:
DTD compiler

The DTD compiler which compiles the elements, entities and attribute definitions in a DTD and repre-
sents them in an internal format. For the elements the internal format is a set of finite-state automata
corresponding to the content definition of the elements. These automata are determined and minimized
during the compilation. Attributes and entities are stored as hash-tables. Additionally in the internal
format the user can write comments on the element, attribute and entity declarations.

Functions connected with the DTD compiler include creating, modifying and removing DTDs from the
system. Also visualization adjustments are related with the DTD management: DTD Text and Tree
Layout.

XML parser

This parser transforms an XML document into internal for the system DOM representation. During the
parsing process the parser checks the well-formedness of the document and reports the corresponding
errors. The parser is aware of different input/output file encodings: UTF-8, UTF-16, and about 34 ASCII
encodings.

The third component is the Validator. This module checks the validity of the document with respect to
a DTD. Each document which is loaded in the system has to be attached to a DTD. Once a document,
is parsed to the internal representation of the system, it can be saved in this internal representation and
the next time when it is used it will not be necessary to be parsed again. The validator is active for the
currently loaded document in the editor and when the user modifies the document the validator reports
the changes in the validity of the document with pointers to the corresponding wrong elements.

3.2 Internal Documents Database

The Internal Documents Database is an essential part of the CLaRK system. It is the place where all
documents saved in the system are stored. The main reason for maintaining such a database is that
the system can work only with well-formed XML documents and having them stored in an internal
format prevents the system from malfunctioning because of incorrect data. This database protects the
documents from being corrupted. In addition, keeping the documents "invisible" for other applications
allows saving additional system specific information with them. The interface of the documents with
external applications can be done by import/export operations. A successfully imported document in
the system has a guaranteed well-formed structure. An exported document from the system is always a

29

well-formed XML document stored in a file, which can be used by other XML oriented applications.

The Internal Document Database represents a set of repositories, called Corpora which contain the saved
documents in the system. The different corpora are identified by unique (user supplied) names. Each
corpus contains a set of documents which are stored independently from the documents of other corpora.
No documents can be saved outside a corpus. The documents within a corpus are identified by unique
names, i.e. no two documents can have the same name. If it is necessary that two or more documents
should have the same name, they must be stored in different corpora.

The possible operations on corpora are:

1. Creating a new corpus. The user supplies a new corpus name which hasn’t been used yet for
another corpus.

2. Removing a corpus. The user selects a corpus to be removed. All documents contained in the
selected corpus are removed as well. The removal is preceded by a confirmation warning message.
There is one system protected corpus ("Root’) which can not be removed. It is always presented
in the system and it is used as a default corpus.

3. Renaming a corpus. The user can rename an existing corpus by supplying a new unique name.
The "Root’ corpus is protected from renaming.

Corpora are document containers only, so it is not possible a corpus to contain another corpus. Each
corpus has its own internal logical structure which facilitates the maintenance of many documents at the
same time. The documents within a corpus are organized in groups. Each group can contain a set of
documents, as well as a set of subgroups. Each group is identified by an unique name within the group
in which it is included, but not necessary unique for the containing corpus. The supported operations
on groups are: creating a new group or a subgroup of a group; renaming a group and removing a group.
The user can include or exclude documents in a group.

The groups are logical unions of documents which do not impact physically the documents themselves.
This means that if a document is removed (excluded) from a group, the document itself is not deleted
from the database, but just excluded from this union. Thus the same document can be included in more
than one group, as well as a document can be included in none.

Note: technically said, the groups contain not documents, but references to documents. In this way, if a
document, is presented in more than one group, the document itself is not multiplied for each containing
group, but the single instance is referred by links from each group entry.

Observing the documents in the Internal Documents Database can be done in three views:

1. by logical tree structure - the hierarchical structure is visualized in a way that on the topmost level
the set of available corpora is shown and under each of them the groups tree structure is visualized.
Selecting a point in the hierarchy causes a visualization of its content in a separate window.

2. by all documents in a corpus - all documents which are presented in a certain corpus are represented
in a table, showing the document names and some other information. The user can switch to
another corpus in order to see its content in a table. In this view the groups information can not
be observed.

3. by all documents in the whole database - all documents from all corpora are represented in one
table. The information shown in the table is the same as the one from the previous view, plus a
source corpus name for each document.

3.3 XML Editor

The access to the system is via a structure-driven editor which allows the user to edit and manipulate
XML documents. Each loaded into the editor document is presented to the user in two or more views.

30

One of these views reflects the tree structure of the document as described in the previous section. The
other views of the document are textual. FEach textual view shows the tags and the text content of
the document. The tags in the textual view are separate elements from the rest of the text and can
not be edited. The user has the possibility to attach to each textual view a filter (Text layout) which
determines the tags and the content of which elements to be displayed in the view. This option allows the
user to hide some of the information in the document and to concentrate on the rest of the information.
With different textual views of the same document the user can attach different layouts. Here, there are
different tags alignment adjustments as well. An advanced option here is that different tags and text
content can be colorized on the basis of the context they appear. These color settings (called Color
Schemes, rely on XPath expression predicates. If the evaluation of such a predicate on a node returns
an approving result, the corresponding node is colorized in a certain color. Otherwise, the default color
for the node is used. Each XPath predicate is wrapped in a rule in which the target color is specified.
Each Color Scheme can contain a set of rules, but only one can be applied to a node (the first one which
matches).

The tree view panel also supports color layout adjustments. The tree structure can not be changed,
but the nodes’ labels can be controlled by the user. Instead of seeing the tag names, a template can
be defined to show some information local for the specific node (for example, attributes names/values).
The template relies on XPath to collect the data to be shown in the node’s label. Thus any information
relative to the specific node can be shown. The template itself can be a mixture of XPath expressions
and static text, which appears unchanged. Additionally, the color of the text label can be adjusted.

The editor supports a full set of editing operations as copy, cut, paste and so on. These operations are
consistent with the XML structure of a document. Thus the user can copy or delete a whole subtree of
the document. Some of these operations as search and replace are defined in terms of XPath expressions.
This allows the user to search not only in textual content of the document but also with respect to the
XML mark-up. The most powerful operation here is the XPath Transformations tool. This operation
is used for various commands for restructuring the document. Generally, the scenario is the following:
(1) a list of nodes (subtrees, text elements) is chosen by the Source XPath expression. In this way the
elements which will be copied or moved in the document are defined; (2) a list of nodes is chosen by the
Target XPath expression. In this way the place(s) where the source elements will be copied or moved are
defined; (3) the elements from source list are attached to the elements of the target list. There are several
options defining the way of performing of the above action. These concern such things as whether the
elements of the source are copied or cut from the document before they are attached to the target, the
mapping between the source and target elements - it is possible for the source elements to be attached to
each element of the target, or each element of the source to be attached to the corresponding element of
the target. Via different options this operation becomes very powerful means for document modification
or entering new information in case the source is given not as an XPath expression but as a fragment of
XML document or text. It is also possible the source expressions to be evaluated on different external
documents and thus allowing their merging.

The editor allows editing of the document textual content or its structure. The editing of the structure
is supported by the attached to the document DTD. When the cursor is located at some point in the
document structure, the user can insert an attribute, a child, a sibling or a parent of the pointed element.
In all cases the DTD is consulted and the list of the allowed for this position tags/values is offered to
the user.

In the system there are several global graphical interface options which can be controlled. There is
a standard font chooser which controls the fonts of the different components independently. A visuals
manager controls the default coloring of different elements in the editor: text and tree views’ backgrounds;
attribute values, tags, text and comments colors. The style in which graphical components are drawn
(i.e. the Look and Feel) can be tuned for easier new user environment adaptation.

The system supports different user defined keyboard layouts. This option can be used for languages
which use not standard letters or letters which do not appear on the available keyboard. Other usages
are in cases when the available auxiliary system layouts are not convenient in a way or there is no support
at all. In such cases the user can define custom key-to-character bindings. The definitions are done with

31

the help of graphical user interface components. Once defined, each layout can be saved and used or
modified later. The system can work with several layouts at the same time (if it is needed). The layouts
are defined by unique names.

3.4 Graphical Tree View

The Graphical Tree View is a means for drawing of tree structures encoded in XML. The result structure
is not necessary to follow the XML logical structure but it can be user defined. The structure definition
is based on XPath expressions. The view of the result drawing follows a defined in advance layout.

The Graphical Tree Layout is a means for drawing arbitrary tree structures represented in XML. The
resulting graphical representation obeys different user adjustments, like colors and shapes rendering, text
and structure definition and filtering and others.

The main graphical objects which can be used for nodes representation are: rectangles, rounded rectangles
and ellipses. The user can specify their outline color and thickness, background color, text label inside
(font, color and content). The nodes in the drawing are connected with lines, the appearance of which is
again user defined: color and thickness. Additionally, there are cross-branches links available. They can
connect any nodes in the drawing with arcs for which the curvature can be adjusted (to avoid overlapping
with other lines and arcs) .

The layout itself represents a set of rules, each of which corresponding to one shape definition. Each
rule has a conditional part which defines to what kind of nodes the rule is applicable (element, text
or comment nodes or nodes, appearing in certain XPath defined context). If a condition for a rule is
satisfied for a certain node, a new graphical object appears on the drawing canvas. The appearance of
the object is defined in the rule.

Another important part of each rule is the Children Definition section which determines the nodes whose
graphical representations will appear as children of the graphical representation of the current node.
The children definition is based on XPath expression and this allows visualization of nodes which are not
direct children of the current node (or even nodes which do not belong at all to the current structure)
as child nodes. The default value of the children definition for each rule is child::*, i.e. all direct child
nodes.

If none of the rules in a layout are applicable for a certain node, there are three default rules, one of
which always succeeds depending on the node type (element, text or comment).

An important section in each layout is the Structure roots definition section. It defines which nodes
in the current document are suitable to be roots of a structure to be visualized. It contains an XPath
expression which is used as a condition and if it is evaluated successfully for a certain node, the graphical
representation building starts from it. Otherwise, the system searches for the closest ancestor which
satisfies the condition.

In order to visualize a document (or a part of a document), it must be opened in the system editor.
Having selected a node in the document, the menu item View/Graphical Tree View must be chosen
which shows the graphical representation in a separate window.

An example usage of this kind of views is related with ontology management. Assuming that an ontology
is encoded in RDF format, one inconvenience could be that the definitions of the concepts are in a way
linear in the document. I.e. the definitions follow one after another and the relationships between them
are not presented in the logical structure of the XML document. Thus, if no specialized tool is used
the observation of the hierarchical structure is very hard (sometimes impossible). Solving this problem
here is relatively simple by defining a suitable graphical layout. The key point is in the definition of the
child nodes for each node. Instead of showing the content (which is the default behaviour) of a node
representing a concept, we will collect all nodes (representatives of concepts) which have a sub-class-of
relation referring to this node (concept). In this way, the hierarchical structure will be shown naturally
as a tree. Another benefit of this view is that it is synchronized with the original document and any
selection on it moves the selection in the source document to the corresponding original position. This

32

helps in cases when a modification on the source document is needed.

3.5 Cross Document Synchronization

This feature allows several documents opened in the system editor to be navigated in parallel. This is
convenient for navigation in aligned text stored in separate documents. Another application is when in a
document there are references to other documents and the referred elements has to be found and shown.
There are two mechanisms for synchronization which use different approaches.

3.5.1 Absolute Path Synchronization

This function gives the facility two or more documents with identical structures to be navigated in
parallel in the editor. There is no restriction how many documents to be synchronized at the same time.
The synchronized documents form a group in which, if the selection in one document is changed this
causes a selection change in the rest group members. In this aspect, the synchronization is symmetric,
i.e it does not matter which document is current and which one is synchronized.

This feature is useful when documents have to be compared manually for some reason. Another applica-
tion is when there is a set of documents representing parallel aligned data (in example, parallel corpora
where each language is in a separate document).

The synchronization, i.e. the distribution of the selection from one document to the others is done on
the basis of the tree path location of the initially selected node. When a selection event is performed to
a certain node, its path to the tree root is calculated, observing for each node in the path its preceding
siblings’ info. The calculation of this tree path results in an XPath expression which deterministically
points to the selected node. In the next step, in all the rest synchronization group members this XPath
expression is evaluated and if it returns a node, the corresponding document selection is moved to it.
Otherwise, the document’s previous selection is cleared. Thus if two documents are structurally identical,
for each node in one of them, there will be a corresponding node in the other one. If having selected a
node in a document, the selection disappears in the other document(s), it means that this node is in a
way unique for this document.

3.5.2 Rule-based Synchronization

The Synchronization Rules is a means for establishing connections between opened documents in the
system editor. The connections are expressed as distributions of a selection in one document to selections
in other documents. The connections are based on XPath expressions processing and evaluation.

When a connection between the current document and another referent document is established each
change of the selection in the current one is registered. If the new selection satisfies certain conditions,
the connection is activated and a new XPath expression is generated on the basis of a pattern. The
new XPath is evaluated in the referent document and the result is selected (in case it is not an empty
node-set).

For establishing a connection of this type, exactly two documents are required: a current document in
which the user works and a referent document in which the selection moves depending on the Sync rule
parameters and the selection in the current document. This type of connections is asymmetric. There is
no restriction on the number of connections which can take a certain document as a current one. In this
respect, the user can connect one document with several referent documents and in this way navigating
in one document causes distribution of selections in different documents in the same time.

An example usage of this facility is when a certain document is explored and simultaneous look-ups in
a dictionary document are needed. In this case a connection between the observed and the dictionary
documents can be established. Whenever a certain word/expression to be looked up is selected, the
system extracts the necessary local information and performs a search in the dictionary document. If

33

the searched entry is found it is selected in the background target document. Thus moving from word to
word in the observed document leads to automatic showing the corresponding entries from the dictionary.

Another application of this tool is when different documents are connected in some way by references.
Whenever a reference in one document is selected, the referent entity in the corresponding document is
selected.

3.6 Additional Tools and Facilities

Besides the fundamental tools presented so far, there is a great number of additional facilities for sup-
porting corpus development implemented in the CLaRK system:

XPath Extractor

The Extractor is a tool for extracting elements with or without their contents from XML documents in
a new document. For instance this can be used to extract all sentences in certain documents that meet
some condition. The condition is stated as an XPath expression.

XPath Remove tool

The Remove tool allows the user to delete some elements with or without their contents that meet a
certain condition stated again as an XPath expression.

XPath Rename tool

This tool allows the user to rename Element nodes in a document selected by an XPath expression.
A new tagname is expected to be specified. The selected nodes are renamed without changing their
attributes and content.

XPath Insert ... tool

This set of tools allows for XPath controlled structured data insertion. The following paragraphs describe
them in details.

XPath Insert Attribute tool

This tool gives the possibility to set certain attributes to nodes selected by an XPath expression. The
user specifies an attribute name and value. Additionally, s/he can tune the tool to set attributes only to
nodes which do not have such yet.

XPath Insert Child tool

This tool allows the user to insert certain child nodes in the content of Element nodes. The target
nodes which the insertion will be applied to are selected by an XPath expression. The result from the
evaluation of the XPath expression must be a list of Element nodes. All the other types of nodes are
discarded. This tool can insert two types of child nodes: Element and Text nodes. If the new children
are of type Element, the tool expects from the user to supply a valid tag name. Otherwise, i.e. when
the new children are Text nodes, the tool accepts any non-empty textual data. The user can also set on
which position the new children will appear in their parents’ content. Here the counting starts from 0,
i.e. the first child is denoted by 0, the second - by 1, etc.

XPath Insert Parent tool

This tool enables insertion of parent Element nodes of selected by an XPath expression nodes. The
selected target nodes by the XPath expression can be either Element or Text nodes. Any other types of
nodes are discarded from the selection. This tool expects from the user to specify a valid tag name for
the new parent nodes.

XPath Insert Sibling tool

This tool allows inserting sibling nodes of nodes selected by an XPath expression. The target selected
nodes can be of any type, but Attribute nodes. If the root node is selected, it is discarded during the
processing time. The new nodes for insertion can be of type Element or Text. If the new nodes are of
type Element, the tool expects from the user to supply a valid tag name. Otherwise, i.e. when the new

34

siblings are Text nodes, the tool accepts any non-empty textual data. The user can also set the position
where the new sibling nodes will appear. The options are: previous (preceding the target node sibling)
and next (following the target node sibling).

Statistics tool

The Statistics tool is used for counting the number of nodes or/and token occurrences in XML docu-
ment(s). The items to be counted initially are selected by an XPath expression. The selection returned
by the XPath evaluation is a node set. For the nodes from the selection the user defines Value Keys.
Each key contains an XPath expression which is meant to point the essential properties of the selection.
For each node of the initial selection the values from the Value Keys are calculated independently. If
for two nodes the corresponding calculated values are the same, they are assumed to belong to the same
class. In this way each of the selected nodes is classified in a set. If the statistics has to be applied not
only on XML nodes, but on tokens the user must select a tokenizer. In this way the text nodes will
be segmented into meaningful tokens. In addition the user can filter the tokens by category in order to
receive information only for certain types of tokens. If no tokenizer is selected, the text nodes will be
processed as a whole node.

The result from the statistics application is a list of all classes formed by the selected nodes. The
information which is kept for each class is:

Searched Item - the item found by the selection (tag name or token);

Item Category - the category of the search item, if the item is a token;

Number of occurrences - the number of items from the selection which belong to the class;

Percentage - the percentage of the items belonging to the class, compared to the rest from the selection;
Keys Value - a string representation of the value(s) for the class.

The result is visualized in a table and can be stored in an XML document.

Sort

The Sorting tool is concerned with sorting elements of a document according to some keys defined over
these elements. The sorting is defined in terms of two XPath expressions. The first expression determines
which elements will be sorted. This expression is evaluated with respect to the root of the document as
a context node. The second XPath expression defines the key for each element and it is evaluated for
each node returned by the first XPath expression. The list of nodes returned by the first expression is
sorted according to the keys of the nodes. Afterwards the nodes are returned in the document in the
new order.

Concordancer

A concordance tool is implemented on the basis of the XPath engine, regular grammar engine and a
sorting module. The concordance tool is useful for searching of some kind of units within some bigger
units. For instance, a word within a sentence, a phrase within a paragraph and similar. The bigger
element is called here a contert and the smaller element is called item. The context is defined by an
XPath expression. The item can be defined by an XPath expression or by a regular grammar. There
are additional possibilities to restrict the context by regular grammars or XPath expressions. The found
units are stored in a new document and presented to the user in a table format. The user can also open
the document as an ordinary XML document and use all the tools available in the system in order to
process further this document.

For example, in case of appropriately marked-up corpus one can extract all verbs and order them with
respect to the first noun on the right hand side of the verb (not necessarily the first word on the right
hand side).

35

4 Tree Intersection Tool

This tool represents a means for comparing tree structures. It calculates the maximal tree structure
which is presented in each of the input structures. The result structure (the intersection) is opened
in the system editor. The differences and the places where they appear are also preserved in internal
structures. On a later stage this information is used to support the user to find the correct target
structure by expanding manually the intersection. When an intersection document is opened, the system
switches to a special performance mode and some of the tree restructuring functions are disabled. Also
some new tool specific functions appear. The structure difference data turns into constraints and the
user expands the intersection by choosing pop-up menu items instead of manual typing. Every time
the user takes a decision by choosing an item, this information is spread on the whole result document
and the intersection is extended. The expansion directions for a selected (unresolved) position can be:
specifying an attribute name or value; specifying content nodes, sibling nodes or parent nodes. Along
with confirming expansion direction entries, the user also can reject certain entries (a kind of negation)
and thus expanding the intersection structure.

In order to compare (intersect) tree structures, the user has to point out the source structures. They can
be located in one document or in more than one. The topmost node of each structure to be processed
within a document is pointed by an XPath expression. If each document contains a single structure the
XPath expression selects the document’s root (i.e. /self::*).

Tree Comparing Algorithm

The construction of an intersection is incremental. It starts from the root of each structure and tries to
find as many common nodes as possible, moving down to all input structures. When a common node for
all structures is found, it is inserted in the result structure. The algorithm combines a top-down with a
bottom-up matching strategy, i.e. the construction of the intersection starts from the root to the leaves
and when it is no longer possible to find nodes in common which are directly assigned to the structure
the system tries to find common nodes on lower levels discarding some nodes on the paths to the roots.
When such common nodes are detected they are attached to the first common grand parents from the
result structure (at worst, to the root).

There are different criteria for finding common nodes. The main factor in matching is the node names
for elements; the string content for text and comment nodes and names and values for attributes. The
contexts of the nodes in the structures (parents, children, siblings) are also very important. The nodes
matching module is aware of the Element Features defined in the corresponding DTDs. This is crucial
when within a structure there are element nodes with equal names, children of the same parents. Then
a distinction is needed to prevent incorrect structures matching. With the help of well defined Element
Values, the processor is enabled to ’see ahead’ and to make the correct matching.

5 Different Processing Tools Integration

In order to make the processing in CLaRK more flexible, most of the system tools are designed in a
certain unified scheme. Each tool’s settings needed for application are stored in XML document (called
Tool Query). On the base of such descriptions, no other things are needed for tools applications. Once
a tool query is created, it can be used many times for applying on different data. These queries can also
contain information about the input and the output (result) data for a certain application.

Each tool from this group supports two modes of application: on the currently opened document in
the system editor and on document(s) from the internal documents database. In the latter case, the
processing efficiency is better and it is recommended for working with bigger amounts of data.

This architecture allows integrating different tool applications in a complete processing procedures. The
integrated procedure definitions consist of lists of Tool Queries. They are applied successively along
the lists. The result from a query in a list is an input for the next query in the list. The last query
produces the final result.

36

The tool which supports this multiple tool integration is called MultiQuery Tool. It is also designed in
this integration architecture, so MultiTool queries can be imbedded in other MultiTool queries. Thus,
more complex tasks can be decomposed in more simple ones.

5.1 Control Operators

The Control operators allow changing the order of application of the queries in the MultiQuery tool.
The usual order of applications starts from the first one and proceeds one by one up to the last one.
Using Control operators some queries can be applied only if certain conditions are true. Such conditions
are: the true or false value of a result from an XPath evaluation; whether the preceding single tool
application has or has not modified the working document; or unconditional (always succeeding). When
a condition for a Control is true, the next query (or another Control), which will be applied, is defined
in the control itself. Otherwise, the application proceeds with the next entry in the list. The Control
operators address their targets (queries or controls to be applied in case of success) by pointing their
labels. Each entry in the list of the queries can have a label (unique identifier) which can be referred by
to control operators. It is an error if a Control operator uses a target label which does not exist.

By using the Controls-labels technique, the user can model the famous IF-THEN-ELSE and WHILE-
CONDITION-DO structures in order to make the processing more flexible. The composition of different
Controls allows the user to create varied 'programs’ or ’scripts’ capable of doing certain jobs. It is up to
the user to create efficient and reliable processing procedures.

5.2 Conditions

The Conditions are operators which perform certain checks on the current working document. The
conditions can cause reconsidering the decisions taken so far and producing new result documents.
Different decisions for a certain document can be taken by the Grammar tool and the (Value) Constraints
tool. The condition operators can be used ONLY in Multiple Apply mode of the tool. The usage on the
current document is not allowed because of efficiency reasons (multiple backtracking events can cause
the system to work very slowly).

When a condition check fails, it causes the system to reconsider the latest decision, taken on a place of a
choice point and recovering the working document to the state when the previous decision was taken. If a
new decision can be taken, the system proceeds the application with it. Otherwise, the system continues
searching backwards for another choice point where a new decision can be taken. If no solution for a
condition is found, the system terminates the current application.

There are two types of Conditions which can be used:

XPath based - an XPath expression is evaluated on the working document and if the result is approving
(not empty node-set, not empty string, positive number or true boolean value) the condition is satisfied;

Value Constraint based - the condition specifies a (Value) Constraints query which contains con-
straints to be applied in validation mode on the working document. If one of the constraints is not
satisfied, the whole condition fails.

6 Future development

The CLaRK system has been used very intensively within the BulTreeBank Project at the Linguistic
Modelling Laboratory - see [Simov, Popova and Osenova, 2001] and [Simov et al., 2002]. We plan to
extend the system in the following directions:

External programs. A mechanism for calling external programs which receive as input fragments of an
XML document and returns also fragments of XML document. We envisage the actual communication
to the external programs to be implemented via transformations of fragments of documents to and from

37

special interface XML documents. In this way an external program will be declared within the system
only once and the user will be able to use the program with XML documents with different structure.

Schemes of dependencies between elements in several documents. This is in connection with databases.
We can consider each XML DTD as a conceptual scheme over XML documents. Then we can use a set
of DTDs to describe interconnected schemes. We plan to implement support for such schemes. Because
the task can prove to be very hard we will start with one basic DTD and auxiliary DTDs defining
interconnections in table format.

We plan to extend the set of events and actions available to the user for defining the constraints. The
target here will be a macro language for definitions of actions. Also we plan to make the constraints
more active and as an activating event will be used the result from evaluation of some other constraint.
In this way we will have mechanisms for propagation of information from one constraint to others.

6.1 Acknowledgements

We would like to thank to Atanas Kiryakov and Marin Dimitrov from OntoText Lab., Sirma AI, Sofia
(http://www.OntoText.com) for their participation in the initial stages of the development of the CLaRK
System.

Also we would like to Zdravko Peev for his great work during early stages of the implementation of the
system.

We would like to thank to our colleagues from BulTreeBank Project: Petya Osenova, Milena Slavcheva,
Sia Kolkovska, Elisaveta Balabanova and Dimitar Doikoff for their patience during the use of the system
in their work.

We would like to thank Petya Osenova and Gergana Popova for their help with the English.

We would like to thank Tylman Ule for his reading of the documentation and pointing us to some
inconsistencies.

We would like to thank all our users for their enthusiasm in using the system and for all the errors they
found in it.

All errors in the text are ours of course.

References

[Abney, 1991] Steve Abney. 1991. Parsing By Chunks. In: Robert Berwick, Steven Abney and Carol
Tenny (eds.), Principle-Based Parsing. Kluwer Academic Publishers, Dordrecht.

[Abney, 1996] Steve Abney. 1996. Partial Parsing via Finite-State Cascades. In: Proceedings of the ESS-
LLI’96 Robust Parsing Workshop. Prague, Czech Republic.

[XCES, 2001] Corpus Encoding Standard. 2001. XCES: Corpus Encoding Standard for XML. Vassar
College, New York, USA. http://www.cs.vassar.edu/XCES/

[DOM, 1998] DOM. 1998. Document Object Model (DOM) Level 1. Specification Version 1.0. W3C Rec-
ommendation. http://www.w3.org/TR /1998 /REC-DOM-Level-1-19981001

[Simov, Popova and Osenova, 2001] K. Simov, G. Popova, P. Osenova. 2001. HPSG-based syntactic tree-
bank of Bulgarian (BulTreeBank). In: Proceedings of Corpus linguistics 2001, Lancaster, UK.

[Simov et al., 2002] K.Simov, P.Osenova, M.Slavcheva, S.Kolkovska, E.Balabanova, D.Doikoff,
K.Ivanova, A.Simov, M.Kouylekov. 2002. Building a Linguistically Interpreted Corpus of Bul-
garian: the BulTreeBank. In: Proceedings from the LREC conference, Canary Islands, Spain.

[TEIL 2001] Text Encoding Initiative. 1997. Guidelines for FElectronic Text Encoding and Interchange.
Sperberg-McQueen C.M., Burnard L (eds).

38

[XML, 2000] XML. 2000. Eztensible Markup Language (XML) 1.0 (Second Edition). W3C Recommen-
dation. http://www.w3.org/TR/REC-xml

[XPath, 1999] XPath. 1999. XML Path Language (XPath) version 1.0. W3C Recommendation.
http://www.w3.org/ TR /xpath

[XSLT, 1999] XSLT. 1999. XSL Transformations (XSLT). version 1.0. W3C Recommendation.
http://www.w3.org/ TR /xslt

39

