
An XML Architecture for Shallow and Deep Processing

Kiril Simov, Alexander Simov, Petya Osenova
BulTreeBank Project

http://www.BulTreeBank.org
Linguistic Modelling Laboratory, Bulgarian Academy of Sciences

Acad. G. Bonchev St. 25A, 1113 Sofia, Bulgaria
kivs@bultreebank.org, alex@bultreebank.org, petya@bultreebank.org

Abstract

The paper presents a set of XML tools for natural language processing such as regular gram-
mars, constraints, transformations, remove and insert operations. The architecture allows any
combinations of the tools depending on the task and the concrete analysis. The main control
mechanism is the backtracking which depends on achieving a particular subgoal in the analysis.

The main advantage of the architecture is better control over interleaving of ”sure” steps (the
shallow processing) and the ”uncertain” steps (the deep processing). In this way the grammar
developers can apply shallow processing not just as a first step, but at any level of processing.

We define shallow processing as a sequence of deterministic analyses and deep processing
as a sequence of non-deterministic analyses. Thus the shallow and the deep components can be
applied to each language level (morphology, syntax, semantics and pragmatics). The complexity
of the processing depends on the complexity of the concrete task, not on the language level.

1 Introduction

The idea of robustness [Stede 2003] has trailed the NLP research into combining the shallow and
deep techniques in the so called ‘mixed-depth’ processing [Hirst and Ryan 1992]. There is no strict
boundary between the two approaches. After having discovered the advantages and weaknesses of
either technique of language analysis, the researchers started to pursue hybrid strategies to solve the
variety of tasks. Another priority in NLP is the preference of model-tasks to general and broad ap-
plications [Stede 2003]. Thus, different potential scenarios should be envisaged and made executable.
Additionally, best practices in the creation of language resources rely on bootstrapping techniques and
knowledge-assisting databases (lexicons). This means that platform flexibility, information complex-
ity and non-determinism should be well supported. For the variety of tasks a core set of techniques
is also required, such as: handling frequent cases as well as cases with great data impact, analogy
mechanisms and incrementality.

In our opinion such a software architecture for supporting shallow and deep processing has to ensure
at least the following functionalities: (1) application of the tools in a cascaded way (with possible
repetition of the application); (2) context dependent application of the tools; (3) usage of temporary
annotation (non-monotonicity); (4) change of the parsing strategy: mixing of top-down and bottom-up
parsing; (5) dynamic reordering of the tool applications; (6) possibilities to redraw some of the previ-
ously generated analyses in cases of failure. A hybrid strategy for shallow processing covering points
from 1 to 5 we have already outlined in [Simov and Osenova 2004]. In this paper we present an exten-
sion of the shallow processing architecture towards deep linguistic processing. The new architecture



can be considered as an incremental partial processing interleaved with deep processing steps. The
main goal is to maximize the deterministic processing and to apply more complex non-deterministic
processing only when it is unavoidable. The main application of the architecture for the moment is
the construction of a treebank for Bulgarian. This application requires a semi-automatic construction
of full syntactic analysis of sentences. This is achieved by using limited (at least with respect to the
coverage) language resources and processors. Thus, the main task is to maximize the utility of the
available resources in order to meet the requirements of the deep processing. This aim is handled by
experimenting with various customizing strategies.

Most of the existing architectures for combining shallow and deep processing offer a central repre-
sentation of the potential linguistic analyses which are produced by different processors like taggers,
partial parsers and deep parsers. Thus these architectures are a media for exchange and combining
of the different analyses. One of the prominent hybrid architectures, which provides possibilities for
access to XML standoff annotation is WHAT: [Schäfer 2003]. Our approach is compatible with this
view because it provides an interface to other programs based on XML as an exchange protocol, but
it also provides a complete set of tools for the creation of full analysis inside the system. This is
important when there are not enough external processors for a language. In this case it is simple for
the developers to use the same software environment for all the processing instead of learning several
platforms.

The structure of the paper is as follows: in Section 2 our architecture for shallow and deep processing
is outlined. Section 3 describes the XML implementation of this general architecture in the CLaRK
system. In Section 4 some applications to Bulgarian are considered with respect to the proposed ideas
for combining shallow and deep processing in a dynamic way.

2 General Architecture for Combined Processing

The key ideas behind our XML architecture are in accordance with the annotation schema of the
HPSG-based treebank for Bulgarian (BulTreeBank). This annotation schema can be viewed as a
combination of shallow and deep processing where the shallow component is used to minimize the
possible analyses resulting from the deep processing step. The actual selection of the true analyses
is performed on the basis of information supplied by the annotator. Hence, the annotation schema
comprises the following steps:

Partial parsing step. This step includes all the processing steps before the application of the HPSG
grammar: (1) Sentence extraction from the corpus. (2) Automatic pre-processing. Each sentence
needs first to be pre-processed at all the levels, that precede deeper syntactic annotation. These include:
Morphosyntactic tagging; Named entity recognition; Part-of-speech disambiguation; Partial parsing.
We aim at a result of a 100 % accurate partial parsed sentence. Thus at this level we do not apply the
rules that are likely to produce errors in some contexts.

HPSG step. The result from the previous step is encoded into an HPSG compatible representation
with respect to the HPSG sort hierarchy. The result is sent to the TRALE System [Meurers et al. 2002].
It takes the partial sentence analyses as an input and evaluates all the attachment possibilities for them.
The output is encoded as feature graphs. In these feature graphs the initial status of the phrases is
restored, i.e. their representation before the application of the HPSG grammar is still available.

Resolution step. The output feature graphs from the previous step are further processed in the fol-
lowing way: (1) their intersection is calculated; (2) then, on the basis of the differences, a set of
constraints over the intersection is introduced; (3) during the actual annotation step, the annotator’s



task is to extend the intersection to full analysis by adding the missing information. The constraints
determine the appropriate extensions and also propagate the information, added by the annotator, in
order to minimize the number of the incoming possibilities.

This annotation schema can be considered as an example of the generate and test approach to the
exploration of the search space in order to find the right analyses. The role of shallow processing
is mainly to reduce the initial size of the search space. The resolution step can be considered as
a consultation with linguistic knowledge sources. The three steps design was guided by practical
solutions but in general we think it can be a sequence of generate and test steps where the generate
steps are of two kinds. These are called shallow and deep steps. Thus our architecture comprises two
main types of processing mechanisms:

1. Deterministic. A processing step which produces a unique analysis within a given context.

2. Non-deterministic. A processing step which produces several different analyses within a given
context, but only some of them are correct.

We consider the first kind of processing steps as shallow processing because their application is ef-
ficient and straightforward. The second kind of processing steps requires some additional source of
linguistic knowledge to select the correct analysis from the potential analyses that have been generated.
Thus we consider these steps as deep processing.

The main tools of the CLaRK System that we use to implement the two kinds of processing steps
are: cascaded regular grammars and constraints. As an approximation of the constituent grammar we
use the cascaded regular grammars. For the propagation of the information along the trees we use the
constraints in insertion mode. For the selection of the appropriate analysis we use the constraints in
validation mode. Note that we use these tools for both processing steps, but in different modes. The
deterministic mode applies the tool and stores the result in the current analysis. The non-deterministic
mode stores temporarily one of the possible analyses and checks for its validity. If the check is satisfied
the system proceeds with the next processing. If the check failed then the next analysis would be
selected.

The architecture allows a dynamic interleaving of the processing steps. Thus, after some non-determi-
nistic steps deterministic ones can be applied. The general idea is for the non-deterministic steps
to be applied as rarely as possible. This is done in accordance with the idea of dynamic networks
of grammars presented in [Simov and Osenova 2004]: a dynamic network of grammars is a set of
grammars (or other grammar networks) which apply to different contexts. The set is ordered (including
cycles). The application of each grammar in the network depends on the place in the order and the
context to which it is applicable. The crucial novelty in the current architecture is that in the previous
work we applied the grammars only deterministically and now they are extended to handle some non-
deterministic tasks. Thus the same idea about the dynamic nature of application is relevant in the new
architecture.

3 Implementation in the CLaRK System

In this section we first describe the basic technologies of the CLaRK System1 — [Simov et. al. 2001].
Then we describe the definition of macro language comprising tool queries and control operators
which is the basis of the implementation of the architecture described above. The backtracking facility
is an extension of the definition of the queries.

1For the latest version of the system see http://www.bultreebank.org/clark/index.html.



CLaRK is an XML-based software system for corpora development. It incorporates several technolo-
gies: XML technology; Unicode; Regular Grammars; and Constraints over XML Documents.

XML Technology

The XML technology is at the heart of the CLaRK System. It is implemented as a set of utilities
for data structuring, manipulation and management. We have chosen the XML technology because
of its popularity, its ease of understanding and its already wide use in description of linguistic in-
formation. In addition to the XML language [XML 2000] processor itself, we have implemented an
XPath language [XPath 1999] engine for navigation in documents and an XSLT engine [XSLT 1999]
for transformation of XML documents. We started with basic facilities for creation, editing, storing
and querying XML documents and developed further this inventory towards a powerful system for
processing not only single XML documents but an integrated set of documents. The main goal of this
development is to allow the user to add the desirable semantics to the XML documents. The XPath
language is used extensively to direct the processing of the document pointing where to apply a certain
tool. It is also used to check whether some conditions are present in a set of documents.

Tokenization

The CLaRK System supports a user-defined hierarchy of tokenizers. At the very basic level the user
can define a tokenizer in terms of a set of token types. In this basic tokenizer each token type is defined
by a set of UNICODE symbols. Above this basic level tokenizers the user can define other tokenizers
for which the token types are defined as regular expressions over the tokens of some other tokenizer,
the so called parent tokenizer. For each tokenizer an alphabetical order over the token types is defined.
This order is used for operations like the comparison between two tokens, sorting and similar.

Regular Grammars

The regular grammars in CLaRK System [Simov, Kouylekov and Simov 2002] work over token and
element values generated from the content of an XML document and they incorporate their results
back in the document as XML mark-up. The tokens are determined by the corresponding tokenizer.
The element values are defined with the help of XPath expressions, which determine the important
information for each element. In the grammars, the token and element values are described by token
and element descriptions. These descriptions could contain wildcard symbols and variables. The
variables are shared among the token descriptions within a regular expression and can be used for
the treatment of phenomena like agreement. The grammars are applied in cascaded manner. The
evaluation of the regular expressions, which define the rules, can be guided by the user. We allow
the following strategies for evaluation: ‘longest match’, ‘shortest match’ and several backtracking
strategies.

Constraints over XML Documents

The constraints that we have implemented in the CLaRK System are generally based on the XPath
language (see [Simov, Simov and Kouylekov 2003]). We use XPath expressions to determine some
data within one or several XML documents and thus we evaluate some predicates over the data. Gen-
erally, there are two modes of using a constraint. In the first mode validation, the constraint is used
for a validity check, similar to the validity check, which is based on a DTD or an XML schema. In
the second mode insertion, the constraint is used to support the change of the document to satisfy the
constraint. The constraints in the CLaRK System are defined in the following way: (Selector,
Condition, Event, Action), where the selector defines to which node(s) in the document the
constraint is applicable; the condition defines the state of the document when the constraint is applied.
The condition is stated as an XPath expression, which is evaluated with respect to each node, selected
by the selector. If the XPath expression is evaluated as true, then the constraint is applied; the event



defines when this constraint is checked for application. Such events can be: selection of a menu item,
pressing of a key shortcut, an editing command; the action defines the way of the actual constraint
application.

Cascaded Processing

The central idea behind the CLaRK System is that every XML document can be seen as a “blackboard”
on which different tools write some information, reorder it or delete it. The user can arrange the
applications of the different tools (not just regular grammars) to achieve the required processing. This
possibility is called cascaded processing.

In the CLaRK System most of the tools support a mechanism for describing their settings. On the basis
of these descriptions (called queries) a tool can be applied only by pointing to a certain description
record. Each query contains the states of all settings and options which the corresponding tool has. In
other words, each query has all the necessary information for applying the tool without any additional
information or user interaction.

For user convenience and debugging purposes the queries themselves are represented in XML format.
Within the system they can be treated like ordinary XML documents having their names and DTD
assignments. For each kind of queries there is a special DTD included in the distribution package of
the system. There the user can see the required structure for an XML document to serve as a query.

Once having this kind of queries there is a special tool for combining and applying them in groups
(macros called multiqueries). During application the queries are executed successively and the result
from an application is an input for the next one. The final result is given by the last query application.

Control Operators

For a better control on the process of applying several queries in one we introduce several conditional
operators. These operators can determine the next query for application depending on certain con-
ditions. When a condition for such an operator is satisfied, the execution continues from a location
defined in the operator. The mechanism for addressing queries is based on user defined labels. When a
condition is not satisfied the operator is ignored and the process continues from the position following
the operator. In this way constructions like IF-THEN-ELSE and WHILE-DO easily can be expressed.

The system supports five types of control operators: IF (XPath): the condition is an XPath expres-
sion which is evaluated on the current working document. If the result is a non-empty node-set, non-
empty string, positive number or true boolean value the condition is satisfied; IF NOT (XPath):
the same kind of condition as the previous one but the result from the evaluation of the XPath expres-
sion is negated; IF CHANGED: the condition is satisfied if the preceding operation has changed the
current working document or has produced a non-empty result document (depending on the opera-
tion); IF NOT CHANGED: the condition is satisfied if either the previous operation did not change
the working document or did not produce a non-empty result; GOTO: unconditional changing the
execution position.

Each macro defined in the system can have its own query and can be incorporated in another macro.
In this way some limited form of subroutine can be implemented.

Backtracking

Two basic tools can be a subject of backtracking: the regular grammars and the constraints in insertion
mode. A regular grammar can backtrack when over a given input it can succeed more than once,
i.e. producing more than one different analysis. A constraint can backtrack when in a context of
application it selects more than one value for insertion. In the case of a grammar the backtracking
mechanism works in left to right scanning mechanism enumerating all possible analyses. In the case



of a constraint an order over the selected values is imposed and they are inserted in this order.

The backtracking over these basic queries is generalized over composite queries in the following way:
(1) for a group of grammars the backtracking mechanism works for each grammar depending on the
order of the grammars in the group. Thus, for a given input the first withdrawn analysis is the last
one of the last grammar from the group which succeeded. So, if, for example, the first grammar does
not produce any acceptable analysis, the second one is tried and so on. Of course, in some cases the
result could be a result of analyses of several grammars in the group; (2) for a query containing several
constraints the values of the first one are checked before the values of the second one and so on; (3) for
a multiquery the backtracking mechanism works over all tools: the grammars, constraints, grammar
group and constraints group queries in the order in which they appear in the multiquery.

A backtracking occurs when some of the IF-THEN operators or the GOTO operators are used with
a special label backtrack instead of ordinary labels. Then the system withdraws all changes of
the document to the point where the last check point for backtracking was saved and an attempt for a
new analysis is done. For a better control over the backtracking mechanism backtracking cancellation
operator (CUT) is implemented in the macro language. It causes deletion of all choice points.

4 Applications to Bulgarian

Here we present a few examples which demonstrate a possible application of the proposed architecture.
Assuming the modularity of the linguistic knowledge available to the system we show how different
levels of deeper linguistic analyses can be achieved. The language data normally provides conditions
for both: deterministic and non-deterministic analyses. Some of them depend on universal criteria, but
other are language-dependent. Deterministic ones are true: always or in certain circumstances. Non-
deterministic ones resist unary interpretation due to insufficient knowledge. So, the idea is: knowing
the selections of the deterministic steps, to reduce the triggers of non-determinism as much as possible
and to reach the best parse/parses. Thus, besides the general principles which restrict all grammatical
sentences, we also rely on storing more specific instances of these principles in order to manipulate
deterministically concrete cases.

In our application to Bulgarian we consider as deterministic the following pre-processing steps:

1. Always applicable:

(a) Unary or one-option analyses: morphosyntactic, chunks, one to one mappings from the
other lexicons;

(b) Lexicalized units or multiword expressions;

2. Applicable in certain contexts

(a) Morphosyntactic disambiguation;

(b) Chunking of phrases with certain right or left context;

(c) Assigning dependency relations within chunks. See in [Osenova 2002].

We consider as non-deterministic the non-resolved ambiguities or in other words, overgeneration,
on each level: grammatical, lexical, structural, constituent, dependency, semantic. The linguisti-
cally rich lexicon is of a crucial importance for resolving the ambiguities. See [Bouma 2001] and
[Grover and Lascarides 2001] among others. The main problem remains the parsing failure due to the



unavailability or the insufficient coverage of such lexicons. This problem can be handled well with
a provisional hierarchy of lexicons, which to supply the information, necessary for the parsing. In
BulTreeBank we have several lexicons: morpho-syntactic, valency, named-entity, semantic, lexicon
of multi-word and parenthetical expressions.

The idea is to order the lexicons according to the coverage and granularity, i.e. first would come the
lexicon with the greatest coverage irrespectively of granularity. Then we should try to derive as much
information as possible from the ones with best coverage while the others would be ‘helpers’ in that
task. In our case the morpho-syntactic lexicon has the biggest coverage. Then come the lexicons of
named-entities (16 000 items), which provide not only semantic, but also grammatical information.
However, the more detailed lexicons suffer from insufficient coverage: the valency lexicon covers only
1000 most frequent verbs and the semantic one - 3000 nouns. The lists of multi-word expressions,
parenthetical expressions, introductory expressions have also been compiled from scratch on the cor-
pus language data. Note that (1) the semantic lexicon is incorporated as semantic constraints over the
verb’s arguments in the valency lexicon and (2) the introductory expressions when being verbs are
considered extensions of the valency lexicon. It is clear that parsing would collapse given the avail-
ability of the presented above lexicons only. For that reason we are trying to customize the encoded
knowledge as much as possible.

As it was mentioned above, the morpho-syntactic lexicon is the most elaborate and thus the most
reliable one. Elsewhere we have already discussed the transfer of representation structures from this
lexicon to attribute:value encodings [Osenova and Simov 2003]. But here we are concerned with the
task how to derive as much linguistic knowledge as possible at this very level. We view the morpho-
syntactic lexicon as a proto-valency lexicon. From the grammatical features we have derived some
simple subcategorization rules, such as: if the verb is intransitive, then there can occur only one NP,
which is the subject; if there is only one masculine noun with a full article inflection, it is the subject
of the sentence etc. Also, agreement patterns are explored. The named-entity lexicons being provided
with grammatical information according to their headwords, do not disturb the flow of the linguistic
information at this level. Thus when there is no support from the valency or semantic dictionary, at
least the rough proto-valency level survives. Note that in longer sentences more rules interfere and
their management becomes more complex. The processing follows the basic algorithm below:

1. First, all the strings are tokenized; tokens are assigned classes according to the token classifi-
cation — common words, names, or abbreviations; then they are morphologically tagged and
disambiguated (including named-entities). It is done by the morphological tagger and two dis-
ambiguators. All multi-words and parenthetical expressions are analyzed as well;

2. If there exists an appropriate frame in the valency dictionary, it is mapped to the corpus;

3. If such a frame does not exist, then the proto-valency level is activated from the morpholog-
ical lexicon via rules and propagation principles. As an additional source of information the
accusative and dative clitics are used because they correspond to the arguments of the verb;

4. If it cannot ensure enough support, then some guessing mechanisms are activated on the base of
the context information and the general token classification information is consulted.

Let us consider some example sentences with respect to the possibilities of the proposed architecture.

(1) Dyzhdyt
rain-the

prodylzhavashe
continued

da shumi
to babble

navyn.
outside

The rain continued babbling outside.



The morpho-syntactic annotation and disambiguation is trivial in the example and can be achieved
with rules. The only composite chunk is the string ‘da shumi’. The analysis after the first shallow
processing steps is:

<N>Dyzhdyt</N><V>prodylzhavashe</V><V-da>da shumi</V-da><Adv>navyn</Adv>

At this level the valency lexicon is consulted and the information is copied to the chunk level. In
this example, this is done for the chunk ‘da shumi’ which receives practically the same valency frame
as the verb form ‘shumi’2. The chunk ‘da shumi’ receives an intransitive frame specifying only the
subject position. The frame for the matrix verb ‘prodalzhavashe’ determines an NP subject and a ‘da-
clause’ complement additionally with the information for a control relation between the subject of the
matrix verb and the subject of the ’da-clause’.

After the propagation of the information to the chunk top level a set of competing grammars is applied.
The order of the grammars corresponds to the order of the realization of the head dependants in our
grammar which is as follows: complements, subjects, adjuncts. Thus, first the grammar for verbal
head-complement phrases is run, but it fails because: (1) the ‘da-clause’ is still not analyzed and
there is no way to satisfy the complement requirements of the verb ‘prodalzhavashe’ and (2) the verb
form ‘da shumi’ does not take a complement. Then the grammar for verbal head-subject phrases is
applied, but it also fails because the complement requirements of the matrix verb are not satisfied.
The N ’dyzhdyt’ is not taken as a subject of the ‘da shumi’ because our grammar presumes that in
subject to subject control relation the subject of the complement clause cannot be extracted unless the
matrix verb is impersonal. So, the subject is indicated by a coreferential pro element. However, the
next grammar for verbal head-adjunct phrases succeeds and attaches the adverb to the verb form ‘da
shumi’. Also a choice point is created, because the adjunct could be attached higher in the tree. The
last grammar is applied once more because in general there can be more than one adjunct. For our
example it fails and then the grammar for clauses is applied completing the ‘da-clause’ analysis. Then
again the same grammar group is applied and in this case the analysis for the matrix verb is completed.
It the end, a group of constraints for the control relation is applied. The resulting analysis is as follows:

<S>
<VPS>
<N id="1">Dyzhdyt</N>
<VPC>
<V>prodylzhavashe</V>
<CLDA>

<VPA><V-da pro-ss="1">da shumi</V-da><Adv>navyn</Adv></VPA>
</CLDA>

</VPC>
</VPS>

</S>

Thus the analysis is complete. In case we want to enumerate all analyses we have to cause backtrack-
ing. In this case all the data added after the choice point is removed and an attempt for a different
analysis is done. In this case we receive an analysis in which the adverb is attached at the sentential
level. We will not present this analysis here.

In case that there is no information from the valency dictionary, the proto-valency information from
the grammatical features is triggered. This, of course, raises the number of possible analyses, because

2Note that if it was a verb with accusative and/or dative clitics presented, then the valency frame would be changed
accordingly.



the provided linguistic information is less constrained. Thus we have the information that both verbs
are intransitive and by the guessing rules we come up with the following possibilities: the verb form
‘da shumi’ receives an intransitive valency frame, because it is the second verb and therefore - the
governed one. However, the first verb, i.e. the matrix one ‘prodylzhavashe’ has two possibilities: either
it receives also an intransitive valency frame, or it receives a valency frame of an intransitive subject-
subject control verb as above. In the latter case there are two possible analyses which are identical to
the ones mentioned above. In the case when the verb ‘prodylzhavashe’ receives an intransitive frame,
the ‘da-clause’ can be only an adjunct to the matrix verb. Because there is no rule which requires
the matrix clause and the adjunct clause to share their subjects there are again two possibilities. Thus
in this case there are four possible analyses. Some of these analysis can be ruled out if additional
preference rules are executed.

(2) Losha
Bad

shega
joke

izigra
played

na
to

DPS
DPS

zhurnalisticheskata
journalistic-the

nablyudatelnost.
watchfulness

Journalisic watchfulness played a practical joke on the Movement of Rights and Freedom

According to the token classification there is one abbreviation and common words. The abbreviation
is matched against the appropriate lexicon and receives its extension and grammatical characteristics
according to its head word. The result after the morphological and chunk processors is as follows:

<NPA>Losha shega</NPA> <V>izigra</V> <PP> na <NPA>DPS</NPA></PP>
<NPA>zhurnalisticheskata nablyudatelnost</NPA>

The valency lexicon provides the frame of the verb: izigraya(Subj-NP, DirObj-NP, IndirObj-PP). But
here we have to deal also with the word order and to map the correct grammatical roles. Thus, the
two NP(Adjunct)s, which are output of the chunking stage, undergo head-dependency transformation.
Then, via a special principle of definiteness, the information from the non-head daughters is propa-
gated to the mother nodes. Thus, the first NPA is indefinite while the second (we do not consider here
the NPA inside the PP) is definite. Both competing NPAs are singular, so the agreement with the verb
is not of a help to us. Thus without additional information we have two possible ananlyses. In order
to rule the unlikely analysis we can apply a preference rule which says that in all other circumstances
being equal the subject is more likely to be definite and the dependants are more likely to be indefinite.

5 Conclusion

In this paper we presented an architecture for a shallow and deep processing. The processing tools are
the same in both kinds of analysis, but with different modes of application. The shallow processing
is mainly deterministic and the deep processing includes also possibilities for non-deterministic steps.
The architecture allows for a dynamic interleaving of the two kinds of the steps as well as different
degree of depth of the used linguistic knowledge. The main processing tools are: (1) cascaded regular
grammars arranged in networks, and (2) constraints used for information propagation and validation of
the analyses. The architecture is implemented within an XML-based system for corpora development:
CLaRK System.

From implementation point of view our future work is connected with the refinement of backtracking
strategies and with more efficient ways for storing the linguistic information.



From linguistic point of view we plan to make more reliable integration between the language re-
sources themselves, and between language resources and implementation possibilities.

References

[Bouma 2001] Gosse Bouma. 2001. Extracting Dependency Frames from Existing Lexical Resources. In: Proc.
of the NAACL Workshop on WordNet and Other Lexical Resources: Applications, Extensions and Cus-
tomizations, Somerset, NJ, USA.

[Grover and Lascarides 2001] 2001. Claire Grover and Alex Lascarides. XML-Based Data Preparation for Ro-
bust Deep Parsing. In: Proc. of the Joint EACL-ACL Meeting (ACL-EACL 2001), Toulouse, Frace.

[Hirst and Ryan 1992] Graeme Hirst and Mark Ryan. Mixed-depth representations for natural language text.
In: Jacobs, Paul S. (editor). Text-basedintelligent systems, Hillsdale, NJ: Lawrence Erlbaum Associates.

[Meurers et al. 2002] Detmar Meurers, Gerald Penn, and Frank Richter. 2002. A Web-based Instructional Plat-
form for Constraint-Based Grammar Formalisms and Parsing. In Proc. of the Effective Tools and Method-
ologies for Teaching NLP and CL. ACL. Philadelphia, PA, USA.

[Osenova 2002] Petya Osenova. 2002. Bulgarian Nominal Chunks and Mapping Strategies for Deeper Syntac-
tic Analyses. In: Proc. of The Workshop on Treebanks and Linguistic Theories. Sozopol, Bulgaria.

[Osenova and Simov 2003] Petya Osenova and Kiril Simov. 2003. Between Chunk Ideology and Full Parsing
Needs. In: Proc. of the Shallow Processing of Large Corpora (SProLaC 2003) Workshop. Lancaster, UK.

[Schäfer 2003] Ulrich Schäfer. 2003. WHAT: An XSLT-based Infrastructure for the Integration of Natural Lan-
guage Processing Components. In: Proc. of HLT-NAACL 2003 Workshop: Software Engineering and Ar-
chitecture of Language Technology Systems. Edmonton, Alberta, Canada.

[Simov and Osenova 2004] Kiril Simov and Petya Osenova. 2004. A Hybrid Strategy for Regular Grammar
Parsing. In: Proc. of LREC 2004. Lisbon, Portugal.

[Simov et. al. 2001] Kiril Simov, Zdravko Peev, Milen Kouylekov, Alexander Simov, Marin Dimitrov, Atanas
Kiryakov. 2001. CLaRK - an XML-based System for Corpora Development. In: Proc. of the Corpus Linguis-
tics 2001 Conference. Lancaster, UK.

[Simov, Kouylekov and Simov 2002] Kiril Simov, Milen Kouylekov, Alexander Simov. Cascaded Regular
Grammars over XML Documents. In: Proc. of the 2nd Workshop on NLP and XML (NLPXML-2002),
Taipei, Taiwan.

[Simov, Simov and Kouylekov 2003] Kiril Simov, Alexander Simov, Milen Kouylekov. Constraints for Cor-
pora Development and Validation. In: Proc. of the Corpus Linguistics 2003 Conference. Lancaster, UK.

[Stede 2003] Manfred Stede. 2003. Shallow - Deep - Robust. In: G. Willee, B. Schroder, H.-C. Schmitz (eds.):
Computerlinguistik -Was geht, was kommt? Computational Lingusitics - Achievements and Perspectives.
Sankt Augustin.

[XML 2000] XML. 2000. Extensible Markup Language (XML) 1.0 (Second Edition). W3C Recommendation.
http://www.w3.org/TR/REC-xml

[XPath 1999] XPath. 1999. XML Path Language (XPath) version 1.0. W3C Recommendation.
http://www.w3.org/TR/xpath

[XSLT 1999] XSLT. 1999. XSL Transformations (XSLT). version 1.0. W3C Recommendation.
http://www.w3.org/TR/xslt


	Workshop Programme Committee
	Sabine Buchholz, Toshiba Research Europe Ltd
	Herve Dejean, Xerox Research Centre Europe
	Anette Frank, DFKI
	Erhard W. Hinrichs, Tübingen University \(co-ch�
	Josef van Genabith, Dublin City University
	Frank Keller, University of Edinburgh
	Sandra Kübler, Tübingen University
	Detmar Meurers, Ohio State University
	Petya Osenova, Bulgarian Academy of Sciences & Sofia University
	Adam Przepiorkowski, Polish Academy of Sciences
	Kiril Simov, Bulgarian Academy of Sciences (co-chair)
	
	
	Kiril Simov, Alexander Simov, Petya Osenova




	51: 51
	52: 52
	53: 53
	54: 54
	55: 55
	56: 56
	57: 57
	58: 58
	59: 59
	60: 60


