
A Hybrid Strategy for Regular Grammar Parsing

Kiril Simov and Petya Osenova

BulTreeBank Project
http://www.BulTreeBank.org

Linguistic Modelling Laboratory, Bulgarian Academy of Sciences
Acad. G. Bonchev St. 25A, 1113 Sofia, Bulgaria
kivs@bultreebank.org, petya@bultreebank.org

Abstract
The paper outlines a hybrid architecture for a partial parser based on regular grammars over XML documents. The parser is used to
support the annotation process in the BulTreeBank project. Thus the parser annotates only the ‘sure’ cases. To maximize the number
of the analyzed phrases the parser applies a set of grammars in a dynamic fashion. Each grammar determines not only the constituent
structure (plus some syntactic dependencies internal to the structure), but also a description of the local and global context of the
recognized phrase. The grammars available to the parser are arranged in a network. The order of the grammars application depends on
the initial ordering in the network and the descriptions associated with the grammars. Thus the traverse is not deterministic. Additionally,
the application of the grammars can be interleaved with the applications of other XML tools like remove, insert and transform operations.
This architecture provides a flexible means for guiding the linguistic analysis in order to utilize all the available linguistic knowledge and
to produce a very accurate partial analysis.

1. Introduction
The creation of a treebank is an enormous effort requir-

ing a lot of manual work during the annotation and valida-
tion of the linguistic data. In order to minimize this kind
of work the annotation architecture of BulTreeBank project
relies on a large set of preprocessing tools like morphologi-
cal analyzer, partial grammars, named entities module, etc.
In order to be reliable with respect to the next processing
stages and the validation procedure, we require each of the
preprocessing steps to recognize only correct pieces of in-
formation. In this paper we present our partial parser. It is
based on regular grammars over XML documents.

The XML representation of the analyses allows us to
check whether certain conditions hold before the applica-
tion of a given grammar over the content of some XML
element. These conditions are represented as a description
over the XML tree containing the element which the gram-
mar will be applied to. This provides us with a means for
a detailed selection of which grammar to be applied where
and in which order. Also, XML allows different ways of
incorporating the grammar application results. Another ad-
vantage of the XML technology is that the application of
the grammars does not require a strict bottom-up or top-
down strategy, it permits dynamic changes at the level of the
grammar application selecting different nodes in the XML
tree. Additionally, we can use other tools over XML docu-
ments in order to perform operations which are not acces-
sible to the grammar engine, such as removing, inserting or
transforming XML elements, attributes or fragments.

Here we present an architecture for a dy-
namic reordering of the regular grammars applica-
tion for parsing. The architecture is implemented
within the CLaRK System ((Simov et. al. 2001),
http://www.bultreebank.org/clark/index.html) over an
XML representation of the processed data.

The structure of the paper is as follows: next section
provides a brief overview of some techniques for partial
parsing with regular grammars; section 3. describes the reg-

ular grammars in CLaRK system; section 4. presents the
dynamic architecture of regular grammars; next section fo-
cuses on the elements of the implemented parser. The last
section concludes the paper.

2. Regular Grammars and Partial Parsing
In this paper we consider regular grammars as a basic

device for achieving partial parsing. Although the regu-
lar grammars are not the only possible way to construct a
partial parser, it remains the most well-known one. Regu-
lar grammars are appealing to the NLP community because
of their effectiveness and applicability. It has been studied
which phenomena can be successfully described by them
and which strategies can be used for the implementation
of the desired behaviour. In NLP there are two competing
strategies at the pre-processing level: bottom-up (easy-first)
and top-down (large-first).

The chunks, being bottom-up units, were defined first
as ‘the non-recursive core of an intra-clausal constituent
to its head, but not including post-head dependents’ (Ab-
ney 1996). Abney’s strategy relies on three heuristics:
detecting ‘islands of certainty’, applying ‘easy-first pars-
ing’ and ‘preferring syntax to semantics’. Hence, in Ab-
ney’s version chunking suggests cascaded bottom-up strat-
egy mainly. The critics of this approach are concerned with
the insufficient coverage and misattachments.

At the opposite extreme is the pure top-down approach
(van Delden and Gomez 2003), which relies on the help
of the punctuation, conjunctions and other markers of de-
limitation. This approach claims that instead of delaying
the attachment resolution, it handles it immediately. How-
ever, this approach is applicable only in the presence of
certain markers. It identifies the general clausal structure
within the sentence and thus restricts the proliferation of
the possible syntactic analyses. However, top-down based
approaches do not explain what happens when these mark-
ers are absent or misplaced in the text.

There have been efforts for combining the advantages

 431



of both approaches. For example, adding some top-down
filtering upon chunking level and establishing a connec-
tion with shallow parsing (Müller 2002). Another exam-
ple is the Topological fields approach to German (Frank
et. al. 2003) which first annotates the macrostructure of
the sentences and localizes the syntactic relations within
topological fields of the German sentence. To avoid the
strict bottom-up (Abney 1996) or top-down (van Delden
and Gomez 2003) strategy, their systems use temporary tag-
ging which blocks the application of certain rules.

Another important mechanism in the construction of
partial parsers is the ‘modularity’ of the grammars (cas-
caded grammars). In fact, the parser uses a sequence of
grammars where each grammar in the sequence works over
the result of the previous grammar work (if any). This
mechanism allows the grammars used in the parser to be
tuned to certain types of sentences. An example for such
tuning is presented in (Nuria 2001) who proposes a ‘two-
tier’ analysis with respect to the complexity of the sen-
tences in the corpus. Then the grammars are divided into
a ‘core’ part which is applicable to simpler sentences com-
mon to all corpora and ‘specific’ part of grammars dealing
with more complex language phenomena. The sentences
are divided into the two categories (first-tier (easier) and
second-tier (harder) sentences) after the partial parsing de-
pending on the recognized elements and the presence of
punctuation, conjunctions, etc. After the classification the
partial analyses for the second-tier sentences are removed
and they are re-analyzed with a set of specific grammars.

The distinction ‘bottom-up’ vs. ‘top-down’ methods in-
terleaves with the dichotomy ‘constructive approach’ vs.
‘reductionist approach’. The former concentrates on iden-
tifying the basic phrases with the help of local gram-
mars, while the latter starts from a set of alternatives and
then reduces them via constraints. In (Ait-Mokhtar and
Chanod 1997) some merging techniques over both ap-
proaches are introduced and the non-monotonicity of the
parser is stressed.

In our opinion, more effort should be put on merging
strategies and mechanisms, because the combination of dif-
ferent sets of advantages gives the best results. Summing
up the above discussion and defining some additional re-
quirements, we think that for maximizing the usage of the
available linguistic knowledge we need a parser which al-
lows for at least the following functionalities: (1) applica-
tion of the grammar rules in a cascaded fashion; (2) con-
text dependent application of the grammar rules; (3) usage
of temporary annotation (non-monotonicity); (4) change of
the parsing strategy: mixing top-down and bottom-up pars-
ing; (5) dynamic reordering of the grammars application.

In the rest of the paper we describe the means that are
used for the construction of a partial parser for Bulgarian
with the above functionalities.

3. Regular Grammars in CLaRK System
The CLaRK System is an XML-based system for cor-

pora development – see (Simov et. al. 2001). It incorpo-
rates the following technologies: XML technology; Uni-
code; Regular (Cascaded) Grammars; Constraints over
XML Documents. For document management, storing and

querying, we chose the XML technology because of its
popularity and its ease of understanding. The core of
CLaRK is an Unicode XML Editor, which is the main in-
terface to the system. Besides the XML language itself, the
system implements an XPath language engine for naviga-
tion in documents and an XSLT engine for transformation
of XML documents. The XSL transformations can be ap-
plied locally to an XML element and its content. There is
a mechanism for the creation of a hierarchy of tokenisers.
They can be attached to the elements in the DTDs and in
this way there are different tokenizers for different parts of
the documents. Constraints can be used in two modes: in-
sertion and validation. Other tools are: remove operation,
XPath insertion, sorting, extraction, concordance, etc.

The regular grammars in CLaRK System work over to-
ken and element values generated from the content of an
XML document and they incorporate their results back in
the document as XML mark-up (Simov, Kouylekov and
Simov, 2002). The tokens are determined by the corre-
sponding tokenizer. The element values are defined with
the help of XPath expressions, which determine the impor-
tant information for each element. In the grammars, the to-
ken and element values are described by token and element
descriptions. These descriptions could contain wildcard
symbols and variables. The variables are shared among the
token descriptions within a regular expression and can be
used for the treatment of phenomena like syntactic agree-
ment. The grammars are applied in a cascaded manner.
The general idea underlying the cascaded application is that
there is a set of regular grammars. The grammars in the set
are in a particular order. The input of a given grammar in
the set is either the input string, if the grammar is first in
the order, or the output string of the previous grammar. The
evaluation of the regular expressions that define the rules,
can be guided by the user. We allow the following strate-
gies for evaluation: ‘longest match’, ‘shortest match’ and
several backtracking strategies.

Here is an example, which demonstrates the cascaded
application of two grammars. The first grammar consists
of the following rule:

<np aa="NPns">\w</np> ->
<("An#"|"Pd@@@sn")>,
<("Pneo-sn"|"Pfeo-sn")>

Here the token description1 "An#" matches all mor-
phosyntactic tags for adjectives of neuter gender, the token
description "Pd@@@sn" matches all morphosyntactic tags
for demonstrative pronouns of neuter gender, singular, the
description "Pneo-sn" is a morphosyntactic tag for the
negative pronoun, neuter gender, singular, and the descrip-
tion "Pfeo-sn" is a morphosyntactic tag for the indefi-
nite pronoun, neuter gender, singular. The brackets < and >
delimit the element descriptions within the rule. This rule
recognizes as a noun phrase each sequence of two elements
where the first element has an element value corresponding
to an adjective or demonstrative pronoun with appropriate
grammatical features, followed by an element with element
value corresponding to a negative or an indefinite pronoun.

1Here # and @ are wildcard symbols.

 432



Notice the attribute aa of the rule’s category. It represents
the information that the resulting noun phrase is singular,
neuter gender. Let us now suppose that the next grammar
aims at the determination of prepositional phrases and it is
defined as follows:

<pp>\w</pp> -> <"R"><"N#">

where "R" is the morphosyntactic tag for prepositions.
Let us trace the application of the two grammars one after
another on the following XML element:

<text>
<w aa="R">s</w>
<w aa="Ansd">golyamoto</w>
<w aa="Pneo-sn">nisto</w>

</text>

First, we define the element value for the elements with
tag w with the XPath expression: “attribute::aa”. Then the
cascaded regular grammar processor calculates the input
word for the first grammar: "<" "R" ">" "<" "Ansd"
">" "<" "Pneo-sn" ">". Then the first grammar is
applied on this input words and it recognizes the last two
elements as a noun phrase. This results in two actions:
first, the markup of the rule is incorporated into the orig-
inal XML document:

<text>
<w aa="R">s</w>
<np aa="NPns">

<w aa="Ansd">golyamoto</w>
<w aa="Pneo-sn">nisto</w>

</np>
</text>

Second, the element value for the new element <np> is
calculated and it is substituted in the input word of the first
grammar. In this way the input word for the second gram-
mar is constructed: "<" "R" ">" "<" "NPns" ">".
Then the second grammar is applied on this word and the
result is incorporated in the XML document:

<text>
<pp>

<w aa="R">s</w>
<np aa="NPns">

<w aa="Ansd">golyamoto</w>
<w aa="Pneo-sn">nisto</w>

</np>
</pp>

</text>

The following rule demonstrates the usage of variables
in a rule:

<np aa="NP&G&N">\w</np> ->
(<"A&G&Nd">,<"A&G&Ni">*)?,<"N@&G&Ni">

Here &G and &N are variables whose use will ensure the
agreement in gender and number. The variables can take
as values arbitrary non-empty strings within a token. Addi-
tionally, the user can define a domain for a certain variable
(a set of permissible values) and a negative domain (a set

of values which are not allowable). In the example above,
the domain for variable &G can be: f, m or n (standing for
feminine, masculine and neuter gender). If no (positive) do-
main is defined then the variable can have any string, which
is not presented in the negative domain, as a value. The
rule itself says that an np is a sequence of a definite adjec-
tive followed by any number of indefinite adjectives and an
indefinite noun. The variable ensures the agreement in gen-
der and number and their values are copied to the resulting
annotation for the np.

The target of a grammar application is determined by
an XPath expression, we call this expression a target de-
scription. The grammar is applied over the context of the
elements described by the target description (selected by
the XPath expression). This possibility gives us a flexible
way to determine where to apply the grammar depending
on the context of the elements. Another mechanism offered
by the system is the filtering of the input for the grammar.
We are able to hide some elements from the content of the
element which the grammar is applied to. In this way, for
example, we can hide some parenthetical expressions when
they are inside some chunk.

4. Towards a Dynamic Network of
Grammars

Facing the linguistic data, it turns out that the method of
cascadedness is not sufficient, because of two reasons: 1.
sometimes the analyses are performed in a non-monotonic
way whereas the cascaded method allows only strict order-
ing from one level to another and 2. sometimes the appli-
cation of one grammar influences the applicability of the
others. Thus we need a network of grammars with cycles
in order to find the best way to process the data.

Our idea is close to the one presented in (Nuria 2001)
for merging determinism with incrementality. A syntactic
diagnosis is needed before the application of an adequate
modular approach. The difference lays in the following:
we do not divide the parsing modules into treating simple
and complex structures. We rather extend this assumption
with dynamic switches between different structures being
either simple, or complex.

The mechanisms in CLaRK allow us to construct a dy-
namic network of grammars: a set of very specific versions
of nearly the same grammar which is applied in different
contexts. They mainly differ in the results that are incor-
porated back in the XML document, in the way the system
prepares the input for them, their target descriptions and
their filters. For example, the nominal chunker (Osenova
2002) is divided into two modules according to the con-
text: ‘contextually non-dependent’ and ‘after preposition’.
In this way the noun groups with uncertain starting indica-
tors are analyzed only in 100 % sure contexts which is their
position after prepositions. As a result, coverage suffers,
but a high accuracy is achieved.

We can determine the order of the grammar applications
in two ways: fixed order networks — a set of ordered gram-
mars in which a grammar is applied after the preceding
grammar has been applied; concurrent order networks —
a set of grammars or grammar networks (with fixed or con-
current order) where each grammar or a grammar network

 433



is associated with an XPath expression. If the XPath ex-
pression is satisfied over the XML document then the corre-
sponding grammar or a network can be applied. The XPath
expressions are also ordered. The system checks the XPath
expressions for satisfiability in turn and for the first satisfied
expression it applies the corresponding grammar (or net-
work). After the application of a grammar (or a network)
the system can either continue with next expressions in the
sequence, to stop the processing, or to change the point in
the sequence from where to proceed further. The specificity
of the context description is defined before the application.
Hence the clashes between the context descriptions of the
grammars is a responsibility of the grammar writer. The or-
der imposed over the XPath expressions is used for avoid-
ing clashes. This procedure allows us to implement any
strategy of evaluation over the different grammars. The tar-
get descriptions of the grammars determine the bottom-up
or the top-down application. The context descriptions de-
termine a dynamic order of applications depending on the
linguistic features presented in the analysis so far and the
results of the previous processing.

The application of the grammar can interleave with the
application of other tools of the system like remove, insert
and transform ones. In this way one can introduce tempo-
rary annotation in the document which to be deleted later.
Also, when checking for certain configurations in the doc-
ument, some transformation can be applied locally. In this
sense our way of processing is non-monotonic.

5. Processing the Data
The actual processing in the annotation of the Bulgarian

sentences is organized in three stages:
Easy-first treatment (bottom-up). The non-recursive

easy-first parsing is applied to base noun phrases, adjecti-
val phrases, adverbial phrases and verbal complexes. Here
we include lexical patterns with heads plus clitic (definite
noun plus possessive or interrogative clitic, definite adjec-
tive plus possessive or interrogative clitic etc.). Note that
the verb can be combined with several clitics in sequence.
Also, some of the grammars for named entities, idiomatic
expressions, dates, abbreviations, multiwords are applied
during this step of processing.

Large-first treatment (top-down). The large-first
technique is applied in two ways: (1) identifying larger
groups of elements and (2) by a list of fixed expressions.
The former is applied preferably to some clauses, which
have clear starting markers and supporting punctuation
like: relative clauses, wh-clauses, clauses for purpose and
cause. The latter maps the fixed expressions to the to-
kens by means of grammars for parentheticals, introductory
phrases. Some fixed expressions are considered markers
for clausal detection. For example, the verbs of saying take
whole sentences as complements in direct speech contexts.
These clauses are easily identifiable by the presence of the
appropriate punctuation.

Network-based treatment. The processing of some
linguistic segments cannot be performed properly neither
with bottom-up, nor with top-down cascaded strategies
only. It needs the appropriate combination of both meth-
ods. Typical examples are PPs, Da-clauses (Bulgarian infi-

nite clauses), coordinations, different clausal embeddings,
all clausal boundaries. PPs can be identified in a bottom-
up manner in sure positions, but with different contexts:
(1) when sentence-final, and (2) within already identified
clauses. Da-clauses are identified precisely when trapped
within other clauses. Thus, when a grammar for other
kinds of clauses succeeds, the grammar for da-clauses is
applied. A similar strategy is applied to the relative clauses
when their attachment depends on the annotation of other
clauses. Coordination is processed better within already
identified clausal boundaries. The grammars can also han-
dle some discontinuity phenomena like extraction. For ex-
ample, there are patterns, in which the subject of the da-
clause is extracted in front of the heading impersonal verb.
The subjecthood of the extracted noun phrase can be easily
checked by mapping person and number features.

6. Conclusion
In this paper we presented an architecture for a (non-

monotonic) partial parsing. The main characteristics of the
architecture is the dynamism of the grammars application
depending on the context. The utility of this hybrid strat-
egy is proved during the annotation of the sentences in the
BulTreeBank project.

7. References
Abney. 1996. Chunk Stylebook. On http://sfs.nphil.uni-

tuebingen.de/ abney/Papers.html, draft.
Ait-Mokhtar S. and Chanod J-P. 1997. Incremental Finite-

State Parsing. In: Proc. of the 5th Conference of Applied
Natural Language Processing. ACL. USA. pp. 72–79.

Frank A., Becker M., Crysmann B., Kiefer B., Shäfer U.
2003. Integrated Shallow and Deep Parsing: TopP meets
HPSG. In: Proc. of 41st ACL Conference. Japan. pp.
104–111.

Müller. 2002. Shallow-Parsing Stylebook for German.
On http://www.sfs.nphil.uni-tuebingen.de/dereko/anno-
doc.html

Nuria Gala Pavia. 2001. A two-tier corpus-based approach
to robust syntactic annotation of unrestricted corpora.
In: Traitement Automatique des Langues, Special Issue
on Corpus Linguistics. Vol. 42, No 2.

Petya Osenova. 2002. Bulgarian Nominal Chunks and
Mapping Strategies for Deeper Syntactic Analyses. In:
Proc. of The Workshop on Treebanks and Linguistic The-
ories. Sozopol, Bulgaria.

Kiril Simov, Zdravko Peev, Milen Kouylekov, Alexander
Simov, Marin Dimitrov, Atanas Kiryakov. 2001. CLaRK
- an XML-based System for Corpora Development. In:
Proc. of the Corpus Linguistics 2001 Conference. pp
558–560.

Kiril Simov, Milen Kouylekov, Alexander Simov. 2002.
Cascaded Regular Grammars over XML Documents. In:
Proc. of the 2nd Workshop on NLP and XML (NLPXML-
2002). Taiwan.

Sebastian van Delden and Fernando Gomez. 2003. A
Larger-first Approach to Partial Parsing. In: Proc. of
RANLP’03 Conference. Bulgaria. pp 124–131.

 434




