
clark1.pdf


553


CLaRK - an XML-based System for Corpora Development1


Kiril Simov, Zdravko Peev, Milen Kouylekov, Alexander Simov, Marin Dimitrov2,
Atanas Kiryakov3


The CLaRK Programme
Linguistic Modelling Laboratory - CLPPI, Bulgarian Academy of Sciences


kivs@bgcict.acad.bg, zpeev@bgcict.acad.bg, mkouylekov@dir.bg, adis_78@dir.bg,
marin@sirma.bg, naso@sirma.bg


1 Introduction


In this paper we describe the architecture and the intended applications of the CLaRK system.
The development of the CLaRK system started under the Tübingen-Sofia International Graduate
Programme in Computational Linguistics and Represented Knowledge (CLaRK). The main aim
behind the design of the system is the minimization of the human work during creation of corpora.
Creation of corpora is still important task for majority of languages like Bulgarian where the invested
effort in such development is very modest in comparison with more intensively studied languages like
English, German and French. We consider the corpora creation task as editing, manipulation,
searching and transforming documents. Some of these tasks will be done for single document or a set
of documents, others will be done on a part of a document. Besides efficiency of the corresponding
processing in each state of the work, the most important investment is the human work. Thus, in our
view, the design of the system has to be directed to minimization of the human work.


For document management, storing and querying we chose XML technology because of its
popularity and its ease for understanding. Very soon XML technology will be part of our lives and it
will be the predominant language for data description and exchange on the Internet. Moreover a lot of
already developed standards for corpus description, such as CES (Corpus Encoding Standard 2001)
and TEI (Text Encoding Initiative 1997) are already adapted to XML requirements. The core of the
CLaRK system is an XML Editor which is the main interface to the system. With the help of the
editor the user can create, edit or browse XML documents. To facilitate corpus management we
enlarge the XML inventory with facilities that support linguistic work. We added the following basic
language processing modules: a tokenizer with a module that supports a hierarchy of token types, a
finite-state engine that supports the writing of cascade finite-state grammars and facilities that search
for finite-state patterns, the XPath query language which is able to support navigation over the whole
set of mark-up of a document, mechanisms for imposing constraints over XML documents which are
applicable in the context of some events, database over the XML mark-up and tokenized content of
the documents.


We envisage several uses for our system: 1) Corpus markup. Here users work with the XML
tools of the system in order to mark-up texts with respect to an XML DTD. This task usually requires
an enormous human effort and comprises both the mark-up itself and its validation afterwards. Using
the available grammar resources such as morphological analyzers or partial parsing, the system can
state local constraints reflecting the characteristics of a particular kind of texts or mark-up. One
example of such constraints can be as follows: a PP according to a DTD can have as parent an NP or
VP, but if the left sister is a VP then the only possible parent is VP. The system can use such kind of
constraints in order to support the user and minimize his work. 2) Dictionary compilation for human
users. The system will support the creation of the actual lexical entries whose structure will be defined
via an appropriate DTD. The XML tools will be used also for corpus investigation that provides
appropriate examples of the word usage in the available corpora. The constraints incorporated in the
system will be used for writing a grammar of the sublanguages of the definitions of the lexical items,
for imposing constraints over elements of lexical entries and the dictionary as a whole.


                                               
1 The work on the system is currently supported by BulTreeBank project funded by the Volkswagen-
Stiftung, Federal Republic of Germany under the programme “Cooperation with Natural and
Engineering Scientists in Central and Eastern Europe” contract I/76 887.
2 Currently at the OntoText Lab, Sirma AI LTD, Sofia
3 Currently at the OntoText Lab, Sirma AI LTD, Sofia







554


The structure of the paper is as follows: in the next section we give a short introduction to the
main notions of XML language and XPath querying language, the third section describes the main
components of the CLaRK system and their functionality, the last section outlines some directions for
future development.


2 XML technology


XML stands for eXtendable Markup Language (see XML 2000) and it emerged as a new
generation language for data description and exchange for Internet use. The language is more
powerful than HTML and easier to implement than SGML. Starting as a markup language, XML
evolved into a technology for structured data representation, exchange, manipulation, transformation,
and querying. The popularity of XML and its ease for learning and use made it a natural choice for
the basis of CLaRK system. This section presents in informal way some of the most important notions
of the XML technology. For more rigorous and full presentation the reader is directed to the
corresponding literature on the following address: http://www.w3c.org/


XML defines the notion of structured document in terms of sequences and inclusions of elements
in the structure of the document. The whole document is considered as an element which contains the
rest of the elements. The elements of the structure of a document are marked-up by means of tags.
Tags can surround the content of an element or tags can mark some points in the document. In the
first case the beginning of an element is marked-up by the so called open tag written as <tagname>
and the end is marked-up by a closing tag written as </tagname>. For example, TEI documents
include on top level the following two elements:


<TEI.2>
<TeiHeader> ... content of the TEI header element ... </TeiHeader>
<text>
... Content of the text element ...
</text>
</TEI.2>


The tags of the second kind, so called empty elements, are represented as <tag/>. For example,
a line break within a sentence can be represented in the following way:


<s> ... first line of text ... <lb/> ... second line of text ... </s>


Each element can be connected with a set of attributes and their values. The currently assigned
set of attributes of an element is recorded within the open tag of the element or before the closing
slash in an empty element. Some of the attribute-value pairs are by default assigned to some tags and
thus it is not obligatory to list them.


One important requirement for an XML document is that elements having common content must
strictly include one into another. This means that overlap of the elements is forbidden. Such
documents are called well-formed. For example, the following document is not well-formed and thus it
is not an acceptable XML document:


<doc><el1> ... <el2> ... </el1> ... </el2></doc>


XML technology defines a set of mechanisms for imposing constraints over XML documents.
Such kind of a very basic mechanism is the so called DTD (Document Type Definition). A DTD
defines the inclusion of elements and the possible sequences of elements within the content of an
element. These definitions are given as ELEMENT statements in the DTD. Each ELEMENT
statement has the following format:


<!ELEMENT tagname content_definition>


where tagname is the name of the element and content_definition is a definition of the content of
this kind of elements. Besides some reserved words as EMPTY and ANY, the content definition is
represented as a regular expression over tag names. This regular expression determines the tags and
their order in the content of the enclosing element. Additionally, the DTD can contain definitions of







555


the allowed attributes for the elements, entities declaration and others. For more details the interested
reader is directed to the literature on the corresponding notions – see the above address.


An XML document containing elements whose content obeys the restrictions stated in a DTD is
said to be valid with respect to this DTD.


Another important language defined within XML world and used within the CLaRK system is
XPath language. XPath is a powerful language for selecting elements from an XML document. The
XPath engine considers each XML document as a tree where the nodes of the tree represent the
elements of the document, the document itself is the root of the tree and the children of a node
represent the content of the corresponding element. Attributes and their values of each element are
represented as an addition to the tree. Each expression in XPath language is evaluated with respect to
a chosen node in the tree, called context node, and consists minimally of two parts: axis and node test.
Optionally one can impose an additional predicate expression. Axis part determines the direction with
respect to the context node in which the expression will be evaluated. Node test determines the type of
the nodes that we are interested in. This can be text, tag names and so on. Among all nodes of the
required type in the specified direction there can be nodes that we want to choose. These nodes are
further filtered by a predicate expression which can be evaluated as true or false over a node. The
XPath syntax allows for recursive XPath expressions and also union of XPath expressions. The
complete definition of the XPath language can be found in XPath (1999). Here we give a very simple
example, the following expression


/descendant-or-self::gram[contains(string(child::text()),"V")]


will be evaluated to a list of all <gram> nodes such that their textual value contains the letter
"V".


3 CLaRK System


At the heart of the CLaRK system is the XML technology as a set of utilitiess for structuring,
manipulation and management of data. We started with basic facilities for creation, editing, storing
and querying of XML documents and developed further this inventory towards a powerful system for
processing not only of single XML documents but of an integrated set of documents and constraints
over them. The main goal of this development is to allow the user to add to the XML documents a
desirable semantics reflecting the user's goals. Inside the system, the core structure of the
representation of the XML documents follows the DOM Level1 specification (DOM 1998). When an
XML document is imported (or created) in the system it is stored in this internal representation and in
this way the user has access to it only via the facilities of the system. This restriction allows us to
support the consistency of the data represented in the system. We plan to exploit this feature of the
system even further in future for automatic support of construction of XML documents that reflect the
content of a corpus or a set of documents.


The CLaRK system includes the following components: XML Engine, XML Editor, Database,
Document Transformation, Tokenizer, Constraints Engine, XPath Engine and FSA Engine. In this
section we describe each of these components in turn. Some of these components are not directly
accessible by the user and they are used in the other components to support the corresponding
functionality. The most important components of this type are the XPath Engine and the FSA Engine.
The first is a module which evaluates XPath expressions over a document and the second is a module
dealing with compilation of regular expressions into finite-state automata, determinization and
minimization of the compiled automata.


The following screen shot gives an overview of the main interface to the system. On the left side
of the screen the tree view of the current document is displayed, under it is the attribute value table
shows the attributes and their values of the selected element. On the right side of the screen the textual
representation of two documents is given. The message window is at the bottom of the screen.







556


3.1 XML Engine


XML Engine offers a full set of facilities for processing XML documents. This includes DTD
compiler which compiles the element, entities and attribute definitions in a DTD and represents them
in an internal format. For the elements the internal format is a set of finite-state automata
corresponding to the content definition of the elements. These automata are determined and
minimized during the compilation. Attributes and entities are stored as hash-tables. The second
element of the XML engine is the XML parser. This parser transforms an XML document into
internal for the system DOM representation. During the parsing process the parser checks the well-
formedness of the document and reports the corresponding errors. The third component is the
Validator. This module checks the validity of the document with respect to a DTD. Each document
which is loaded in the system has to be attached to a DTD. Once a document is parsed to the internal
representation of the system, it can be saved in this internal representation and the next time when it
is used it will not be necessary to be parsed again. The Validator is active for the currently loaded
document in the editor and when the user is modifies the document the Validator reports the changes
in the validity of the document with pointers to the corresponding wrong elements of the document.


3.2 XML Editor


Access to the system is via a structure-driven editor which allows the user to edit and manipulate
XML documents. Each loaded into the editor document is presented to the user in two or more views.
One of these views reflects the tree structure of the document as described in the previous section. The
other views of the document are textual. Each textual view shows the tags and the text content of the
document. The tags in the textual view are separate elements from the rest of the text and can not be
edited. The user has the possibility to attach to each textual view a filter which determines the tags
and the content of which elements to be displayed in the view. This option allows the user to hide
some of the information in the document and to concentrate on the rest of the information. With
different textual views of the same document the user can attach different filters.


The editor supports a full set of editing operations, such as copy, cut, paste and so on. These
operations are consistent with the XML structure of the document. Thus the user can copy or delete a







557


whole subtree of the document. Some of these operations as search and replace are defined in terms of
XPath expressions. This allows the user to search not only in textual content of the document but also
with respect to the XML mark-up. The most powerful operation here is the XPath replace. This
operation is used for various commands for restructuring the document. Generally, the scenario is the
following: (1) a list of nodes (subtrees, text elements) is chosen by the Source XPath expression. In
this way the elements which will be copied or moved in the document are defined; (2) a list of nodes is
chosen by the Target XPath expression. In this way the place(s) where the source elements will be
copied or moved are defined; (3) the elements from source list are attached to the elements of the
target list. There are several options defining the way of performing of the above action. These
concern such things as whether the elements of the source are copied or cut from the document before
they are attached to the target, the mapping between the source and target elements - it is possible for
the source elements to be attached to each element of the target, or each element of the source to be
attached to the corresponding element of the target. Via different options this operation becomes very
powerful means for document modification or entering new information in case the source is given
not as an XPath expression but as a fragment of XML document or text. In future we plan to allow an
evaluation of the source and the target expressions over different documents and thus to allow their
merging.


The editor allows editing of the document textual content or its structure. The editing of the
structure is supported by the attached to the document DTD. When the cursor is located at some point
in the document structure, the user can enter a child, a sibling or a parent of the pointed element. In
both cases the DTD is consulted and the list of the allowed for this position tags is offered to the user.


3.3 Document Transformation


The system offers a general mechanism for the transformation of some XML documents into
other XML documents. This is done by implementing XSLT language (XSLT 1999). The
transformations can be applied in two modes: globally and locally. When a transformation is applied
globally it is applied to the whole document. In future we plan some transformation to be applied to a
set of documents. When the user wants to apply a transformation locally he/she first selects an
appropriate fragment of the document and then the transformation is applied only to this fragment.
This last option provides a mechanism for construction of a set of transformations which the user
applies depending on the current task and thus avoiding the necessity to write very specific conditions
on the applicability of the transformation.


Some transformations, corresponding to small changes in the DTD of documents (such as
reordering of elements), are generated automatically.


3.4 Tokenizer


XML considers the content of each text element as a whole string that is unacceptable for corpus
processing where one usually requires to distinguish wordforms, punctuation and other tokens in the
text. In order to cope with this problem the CLaRK system supports a user-defined hierarchy of
tokenizers. At the very basic level the user can define a tokenizer in terms of a set of token types. In
this basic tokenizer each token type is defined by a set of UNICODE symbols. Above this basic level
tokenizers the user can define other tokenizers for which the token types are defined as regular
expressions over the tokens of some other tokenizer, so called parent tokenizer. In the system tokens
are used in different processing modules. For each tokenizer an alphabetical order over the token types
is defined. This order is used for operations as comparing two tokens, sorting and similar.


Sometimes in different parts of one document the user will want to apply different tokenizers.
For instance in a multilingual corpus the sentences in different languages will need to be tokenized by
different tokenizers. In order to allow this functionality, the system allows for attaching tokenizers to
the documents via the DTD of the document. To each DTD the user can attach a tokenizer which will
be used for tokenization of all textual elements of the documents corresponding to the DTD.
Additionally the user can overwrite the DTD tokenizer for some of the elements attaching to them
other tokenizers.


3.5 Constraints


General syntax of the constraints in the CLaRK system is the following:







558


(Selector, Condition, Event, Action)


where the selector defines in which node(s) in the document the constraint which is applicable;
the condition defines the state of the document when the constraint is applied. The condition is stated
as an XPath expression which is evaluated with respect to each node selected by the selector. If the
evaluation of the condition is a non-empty list of nodes then the constraints are applied; the event
defines some conditions of the system when this constraint is checked for application. Such events can
be: the selection of a menu item, the pressing of key shortcut, some editing command as enter a child
or a parent and similar; the action defines the way of the actual application of the constraint.


At the moment the following constraints are implemented in the system:


FSA constraints


In this kind of constraints the action is defined as a regular expression which is evaluated over
the content of each element selected by the selector. If the word formed by the content of element can
be recognized as belonging to the language of the regular expression then the constraint is evaluated
as true. Otherwise it is evaluated as false and an appropriate message is given. Because the content of
the elements can contain text and tags, one problem here is how to determine the word which
corresponds to the content of the element. For example, if all wordforms in a sentence are surrounded
by <w> tag then the content of a sentence element will be a list of <w> tags which is obviously not
acceptable. In order to overcome this problem we allow the “letters” used in the definition of the
regular expressions to be of three kinds: tag value, token type, and token value.


Tag value is a string which is the result from the evaluation of an XPath expression over an
element. The appropriate XPath expression for each tag is attached to the DTD. When the content of
an element is converted into a word to be checked by the FSA constraint, for each non-textual element
of the content the corresponding XPath expression is evaluated and the first node in the returned list
is considered as a string. If this first node is a text node then the first token is taken as a value. If the
node is an attribute then the first token of the attribute value is taken. Otherwise the tag of the node is
taken as value.


Token type and token value “letters” correspond to the tokenized textual content of the element.
When the constraint is applied to an element, the element's immediate children are first


processed, tokenizing any textual data, evaluating all tag values and then sent to the FSA representing
the regular expression. Token's string value has a higher priority over token's category. Since the
evaluation of the FSA is linear, the FSA may reject some sequences that are valid. For example
consider the category LAT to be the category for all Latin words. Then having the regular expression


(LAT,<a>)|("to",<b>)


and evaluating it on the element


<el>to<a/></el>


the FSA will answer that the content of el is not valid.


Number Constraints


This kind of constraints are defined in terms of an XPath expression, which is evaluated to a list
of nodes, and MIN and MAX values where MIN and MAX are natural numbers. The constraint is
satisfied (evaluated as true) if the length of the list returned by the XPath expression is between MIN
and MAX.


Value Constraints


These constraints determine the possible children or the parent of an element in a document.
These constraints apply when the user enters a new child or a new parent of an element. In both cases
a list of possible children or parents are determined by the DTD, but depending on the context in the
document an additional reduction of these lists is possible. In case the only possible child of an







559


element is a text then these constraints determine the possible text values for the element. Let us take
as an example the following definitions in a DTD:


<!ELEMENT np ((np, pp) | ...) >
<!ELEMENT vp ((vp, pp) | ...) >


which in part define that a PP can be attached to a NP or a VP. Then let us take the partially
marked-up sentence:


<s>
<np>The man</np><v>saw</v><np>the boy</np><pp>in the garden</pp>
</s>


For the PP "in the garden" there are still two possibilities for a parent - a NP or a VP. But if the
user enters a new information than "saw the boy" is a VP then for the PP "in the garden" there is only
one possible parent - a VP. This information can be encoded in the system as a value constraint for the
parent of PP elements. In future versions of the system we envisage such kind of constraints to be
compiled from grammar represented in a grammar development environment.


3.6 Cascade Finite State Automata Grammars


Having a finite state automata facilities implemented in the system it is relatively simple to use
them for regular grammar development. The CLaRK system incorporates mechanisms for writing
cascade finite state grammars as defined in Abney (1996). The evaluation of the regular expressions
follow the longest match strategy. Again the regular expression can be defined over tag values, token
types and token values. The new category for each recognized word can be presented in the document
as any kind of mark-up, but usually this is done by surrounding tag with appropriate attributes.


3.7 Database


A relational database over the content of the documents imported into the system is established
in order to support an evaluation of limited XPath expressions over a set of documents. In the
database information about the tags, the attributes and the tokens of the documents is stored. The
documents are stored separately as files in internal format. The evaluation of a query with respect to
the database returns a list of documents satisfying the query. These documents are further processed if
this is necessary.


3.8 Other facilities


Here we will describe two more functions of the system which are useful in the process of
corpora development. The first is concerned with sorting elements of a document according to some
keys defined over these elements. The sorting is defined in terms of two XPath expressions. The first
expressions determine which elements will be sorted. This expression is evaluated with respect to the
root of the document as a context node. The second XPath expression defines the key for each element
and it is evaluated for each node returned by the first XPath expression. The list of nodes returned by
the first expression is sorted according to the keys of the nodes. Afterwards the nodes are returned in
the document in the new order.


A concordance tool is implemented on the bases of the XPath engine and the sorting module.
The first step in a concordance construction is to extract the relevant information from the current
document. This is done by an XPath expression which is evaluated and the returns list of nodes is
stored as a separate document. The extracted elements are ordered in an appropriate way with the help
of the sorting module. For example, in case of appropriately marked-up corpus one can extract all
verbs and order them with respect to the first noun on the right side of the verb (not necessarily the
first word on the right side).


The system supports definition of different keyboards for supporting of different languages. At
the moment we support the standard American keyboard and Bulgarian keyboard for entering Cyrillic
letters.







560


4 Future developments


The ClaRk system will be very intensively used within the BulTreeBank Project which just has
started at the Linguistic Modelling Laboratory – see Simov, Popova, Osenova (2001). We plan to
extend the system in the following directions:


External programs. A mechanism for calling external programs which receive as input fragments of
an XML document and returns also fragments of XML document. We envisage the actual
communication to the external programs to be implemented via transformations of fragments of
documents to and from special interface XML documents. In this way an external program will be
declared within the system only once and the user will be able to use the program with XML
documents with different structure.


Schemes of dependencies between elements in several documents. This is in connection with
databases. We can consider each XML DTD as a conceptual scheme over XML documents. Then we
can use a set of DTDs to describe interconnected schemes. We plan to implement support for such
schemes. Because the task can prove to be very hard we will start with one basic DTD and auxiliary
DTDs defining interconnections in table format.


We plan to extend the set of events and actions available to the user for defining the constraints.
The target here will be a macro language for definitions of actions. Also we plan to make the
constraints more active and as an activating event will be used the result from evaluation of some
other contraint. In this way we will have mechanisms for propagation of information from one
constraint to others.
We also plan to add statistical facility for evaluating the quantity characteristic of the documents. The
result of this facility will be a table of the relative frequency of some mark-up to some other mark-up
in the document. Also we plan to add some other views over documents that are not naturally
represented in textual or tree view of XML document such as graph view reflecting the ID references
inside a document or other interpretations of the content of a document.


References


Abney St 1996 Partial Parsing via Finite-State Cascades. In: Proceedings of the ESSLLI'96 Robust
Parsing Workshop. Prague, Czech Republic.


Corpus Encoding Standard 2001 XCES: Corpus Encoding Standard for XML. Vassar College, New
York, USA. http://www.cs.vassar.edu/XCES/


DOM 1998 Document Object Model (DOM) Level 1. Specification Version 1.0. W3C
Recommendation. http://www.w3.org/TR/1998/REC-DOM-Level-1-19981001


Simov K, Popova G, Osenova P 2001 HPSG-based syntactic treebank of Bulgarian (BulTreeBank).
In: Proceedings of Corpus linguistics 2001, Lancaster, UK.


Text Encoding Initiative 1997 Guidelines for Electronic Text Encoding and Interchange. Sperberg-
McQueen C.M., Burnard L (eds).


XML 2000 Extensible Markup Language (XML) 1.0 (Second Edition). W3C Recommendation.
http://www.w3.org/TR/REC-xml


XPath 1999 XML Path Lamguage (XPath) version 1.0. W3C Recommendation.
http://www.w3.org/TR/xpath


XSLT 1999 XSL Transformations (XSLT) version 1.0. W3C Recommendation.
http://www.w3.org/TR/xslt






