
Cascaded regular grammars and constraints over morphologically annotated

data for ambiguity resolution
*

Krasimira Ivanova, Dimitar Doikoff

BulTreeBank Project
http://www.BulTreeBank.org

Linguistic Modeling Laboratory, Bulgarian Academy of Sciences
Acad. G. Bonchev St. 25A, 1113 Sofia, Bulgaria

krassy_v@abv.bg, dim_doikoff@abv.bg

Abstract

The work that we present in this paper is part of BulTreeBank Project which aims at the creation of

syntactically annotated data for Bulgarian and the tools for their production, management and automatic

processing. It provides not only language resources, but develops an infrastructure of research solutions,

production scenarios and services. Here we discuss some linguistic problems that can be solved with the

help of CLaRK System's tools. We mainly use regular grammars, constrains and removal operations.

1. Introduction

This paper reports one of the steps towards the creation of a linguistically interpreted text archive of
Bulgarian. In order to use the text archive in an efficient and linguistically motivated way, we envisage
annotation of the texts with the relevant morphosyntactic information for wordforms and appropriate
linguistic information for other kinds of expressions in the text, such as numerical expressions, special signs
($, %), foreign words and others. Sometimes these peculiar expressions bear lexemic information similarly
to the wordforms, but sometimes they constitute phrases and need a special treatment. Additionally, we
developed several partial grammars for processing the rest of the tokens in the texts.

Our work aims at providing better mechanisms for improvement of data processing and minimization of the
linguistic work. The solution is implemented within the CLaRK System - an XML-based System for
Corpora Development (Simov et. al., 2001).

The linguistic information is encoded in XML documents which are well formed over already developed
standards for corpus description (XCES, 2001 and TEI, 2001). For navigation in documents we use XPath
language (see XPath, 1999).

The central view on the use of the CLaRK system is that an XML document under processing can be seen as
a "blackboard" on which different tools can write some information, reorder it or delete it. We used the
following tools of CLaRK:

Tokenizer tool with a module that supports a hierarchy of token types

Finite-state engine that supports the writing of cascaded regular grammars

Constraints tool - especially Some Children Constraint

* This work is funded by the Volkswagen Stiftung, Federal Republic of Germany under the Programme "Cooperation

with Natural and Engineering Scientists in Central and Eastern Europe" contract I/76 887. The authors are grateful to

Kiril Simov, Petya Osenova and the three anonymous reviewers for their comments on the paper.

96

Removal operation

This paper discusses several methods for data processing that we called cascade-processing approach. Next
section presents abstract view of used features. In the third section we describe the cascade regular
grammars. Fourth section focuses on the writing of disambiguation rules. The fifth section presents the
usage of temporary mark-up. The last section outlines the conclusion.

2. Abstract view of used features (tools)

In this section we present some of the tools used in our work and incorporated within the CLaRK System

Linguistic markup

Tokenizers

Constraints

Cascaded regular grammar

Removal operations

2.1. Linguistic markup

We extended the level of data encoding by separating text into tokens - Cyrillin words, punctuation and
others (numbers, unrecognized Cyrillin words and non-Cyrillin words). For our purposes we use the
following annotation:

<w> - for Cyrillin words

<pt> - punctuation

<tok> - for others - value of attribute type refer to the tokenizer category of the recent token.
Possible values are:

num - for numbers

cyr - unrecognized Cyrillin words

lat - latin words

alphonum – for mixed tokens like U-571, MIG-29

symbol - $, % etc

On the word level we have three subelements:

<ph> - phonetics - orthographical representation of the word

<aa> - all analyses - information from the morphological analyzer implemented in the CLaRK
system based on (Popov, Simov and Vidinska, 1998) - all possible morphological characteristics
associated with the current Cyrillin word.

<ta> - true analysis - the appropriate morphological characteristic of the word in the current context

2.2. Tokenizer

XML considers the content of each text element a whole string that is unacceptable for corpus processing.
For this reason, it is required for the word-forms, punctuation and other tokens in the text to be
distinguished. In order to solve this problem, the CLaRK System supports a user-defined hierarchy of
tokenizers. At the very basic level users can define a tokenizer in terms of a set of token types. In this basic
tokenizer each type is defined by a set of UNICODE symbols. Above basic level there are tokenizers for
which the token types are defined as regular expressions over the tokens of some other tokenizer, the so-
called parent tokenizer.

For example we have Default tokenizer (basic for CLaRK system) with the following categories:

Category Expression

LATc 'A'-'Z' Latin capital letters

97

LATs 'a'-'z' Latin small letters
CYRc ' '-' ' Cyrillin capital letters
CYRs ' '-' ' Cyrillin small letters
NUMBER '0'-'9' Arabic digits
SPACE ' '
…… There are other tokenizer categories

We can build a new tokenizer (Uptok) based on the Default (parent) tokenizer. It will separate words with
capital first letter from words with small letters. This is important for named entity recognition and sentence
boundary. Here to define new categories we use names of categories defined in the parent tokenizer.

LATwc LATc,(LATc|LATs|"-")* Latin words starting with capital letter

LATws LATs,("-"|LATs) Latin words with small letters

CYRwc CYRc,(CYRc|CYRs|"-")* Cyrillin words with first capital letter

CYRws CYRs,("-"|CYRs)* Cyrillin words with small letters1

The syntax will be explained bellow in regular expression – section 2.4.1.

2.3. Constraints (Some children value constraints)

Here we present the constraints of type "Some Children" which helps the underlying strategy of
minimization of the human labor. This kind of constraints deals with the content of some elements. They
determine the existence of certain values within the content of these elements. A value can be a token or an
XML mark-up and the actual value for an element can be determined by the context. Thus a constraint of
this kind works in the following way: first it determines to which elements in the document it is applicable,
then for each such element in turn it determines which values are allowed and checks whether in the content
of the element some of these values are presented as a token or an XML mark-up. If there is such a value,
then the constraint chooses the next element. If there is no such value, then the constraint offers to the user a
possibility to choose one of the allowed values for this element and the selected value is added to the content
as a first child. Additionally, there is a mechanism for filtering the appropriate values based on the context of
the element.

2.4. Cascaded Regular Grammars

Cascaded regular grammar (Abney, 1996) is a sequence of regular grammars defined in such a way that the
first grammar works over the input word and produces an output word of categories, the second grammar
works over the output word of the first grammar, produces a new word of categories and so on. The output
of the last grammar constitutes the analyses made by the cascaded regular grammar.

2.4.1. Regular Expressions

For the grammar writing within CLaRK system we used regular expressions and we present here some basic
principles of the regular expressions and their syntax:

Letter - we call a letter every designate symbol. The symbol is usually understood as a symbol code
in the computer.

Alphabet - set of letters.

Word - word is a finite sequence of letters over some alphabet and wildcards.

Example:
'"bet" - sequence of letters over Latin alphabet

Language - is a set of words over some alphabet.

1 We use dash for words like "well-formed"

98

Wildcards (not letters)

1 @ - matches one symbol.

2 # - matches any number of symbols.

Example:

"be@" - all words starting with 'be' and having length 3 symbols. Possible matches are - 'bee', 'bet',
'bed' and so on.
"be#" - all words starting with 'be' , for instance: 'be', 'bet', 'bed', 'bear', 'better', 'beautiful' and so on.

Wildcards can be escaped by the symbol ^

"be^@" - matches only 'be@' -string

Syntax of Regular Expression - A regular expression over an alphabet is an expression that can be
interpreted as the set of words over the alphabet. This set of words is the language that is recognized by the
regular expression. Before giving the syntax and semantics of the regular expressions, we will enrich our

formal inventory with letter descriptions. A letter description is an expression ld which denotes a set of
letters from a given alphabet. Each letter from a given alphabet is a description of itself. Wildcards are
descriptions of a letter from a given alphabet.

1 Basic case - if ld is a letter description, then ld is a regular expression

2 Concatenation (,) - If r1 and r2 are regular expressions, then (r1,r2) is a regular expression.

3 Union (|) - If r1 and r2 are regular expressions, then (r1|r2) is a regular expression.

4 Kleene Star (*) - If r is regular expressions, then r* is a regular expression, which matches zero or

more occurrences of r.

5 Kleene Plus (+) - If r is regular expressions, then r+ is a regular expression, which matches one or

more occurrences of r.

6 Question mark (?) - If r is regular expressions, then r? is a regular expression, which matches zero

or one occurrences of r.

Regular expressions are interpretated in the usual way. The difference is in the interpretation of the letter
descriptions, which denote the set of words constituted by a single letter from the set of letters described by
the letter description.

2.4.2. Cascade Regular Grammars in the CLaRK System

In the CLaRK System, as it was mentioned above, there are: cascaded application of regular grammar
(Abney, 1996); and extension of the rules with descriptions of the left and the right contexts of a subword
recognized by the regular expression of the rule.

Every line in the grammar tool is a rule which consists of four columns: LC - a regular expression defining

the left context of the words recognisable by the rule, RE - a regular expression defining the set of words

recognisable by the rule, RC a regular expression defining the right context of the word and RM - return
markup (category for the rule). The return markup is a custom markup that substitutes recognized word.

Since in most cases we would also like to save the recognized word we use the variable \w for it. The

variable \w can be repeated as many times as necessary (it can also be omitted).

The regular expressions LC and RC can be empty and then there are no constraints over the left and the right
context. We envisage the use of such rules for tasks as sentence boundary recognition where one has to take
a look at the word after the full stop in order to determine whether this full stop is marking the end of the
sentence or not.

When we apply a grammar to an element which content is text, we first tokenize the content by a tokenizer
and then it is used as input for the grammar. Additionally, each token receives a unique type. For instance
the content of following element:

99

<s> I love my cat Mary</s>

can be segmented (with usage of Uptok tokenizer (see above)) as follows:

Word Token category

'I' LATwc

' ' SPACE

'love' LATws

' ' SPACE

'my' LATws

' ' SPACE

'cat' LATws

' ' SPACE

'Mary' LATwc

We can refer to the word itself (1) represented as a string (also including wildcards) enclosed in double
quotes. On the other hand, we can refer to the token category (2) that is assigned to the word - token

categories are represented by $name_of_category.

 Examples:
1)

"love" could be matched only to the token 'love' in the above example
"#y" could be matched to the tokens 'my' and 'Mary'
"@" matches 'I' and spaces

2)
$LATwc is matched to 'I' and 'Mary'
$LAT# is matched to 'I', 'love', 'my', 'cat', 'Mary'
$# is matched to any of token categories including spaces

How to consider the content of an element as input word fora grammar if it is a sequence of elements? For
instance, if the above sentence is represented as:

<s>

<Pron>I</Pron>

<V>love</V>

<Pron>my</Pron>

<N>cat</N>

<N>Mary</N>

</s>

If we takethe tags, then the input is the following sequence: <Pron><V><Pron> <N><N>. But if the content
is sophisticated as the following:

<s>

<w g="Pron">I</w>

<w g="V">love</w>

<w g=" Pron">my</w>

<w g="N">cat</w>

<w g="N">Mary</w>

</s>

100

then the sequence of tags <w><w>...<w> which is not acceptable as an input.

In order to solve the problem we substitute each element with a sequence of values. This sequence is
determined by a XPath expressions (keys) that are evaluated taking the element node as the context node.
The sequence defined by a XPath expression is called element value in the CLaRK System. Thus, each
element in the content of the element is replaced by a sequence of text elements. For the above example a

possible element value for tag <w> could be defined by: attribute::g. This XPath expression returns the

value of the attribute g for each element with tag <w>. Therefore a grammar working on the content of the
above sentence will receive as an input the sequence <"Pron">,<"V">,<"Pron">,<"N">,<"N">. Besides
attributes, by using of XPath expressions one can point to arbitrary nodes in the document, so that the
element values can be defined in various forms.

When we refer to an element in a regular expression it must be enclosed in < >.

2.5 Removal operation

Within the CLaRK System there is a possibility to delete elements from the document. Element selection is
done by an XPath expression. Selected elements can be removed with or without their content.

3. Grammars for processing of a text archive

In this section, we represent some problems that appeared during the processing of the text archive and have
been solved by cascaded regular grammars.

3.1. Abbreviations

First, we extracted all possible abbreviations into a list of abbreviations [written in several ways in Bulgarian
language: "tn." (so on), "s/u"(opposite), "g." (year), "g-n" (Mr.), "NATO"] from our corpus. Work on
extraction, classification, and linguistic treatment of abbreviations is done by Osenova and Simov (Osenova
and Simov 2002). To apply this list over the texts we have two steps (first - grammar applying and second
step - removing some auxiliary tags).

3.1.1 Graphical abbreviations

We have written four different grammars for each type of abbreviation.
1 "s/u" (opposite), "km/h" (kilometers per hour) , "v/u" (on) - abbreviations with slash.
2 "g-n" (Mr.), "g-ja" (Mrs.) - abbreviations with dash.
3 "t.g." (this year) - and abbreviations with full stop and dash - "j.-izt." (Southeast).
4 "g."(year) , "str."(page) - abbreviations with only one full stop

To mark-up abbreviations and acronyms we use standard tag <abbr>, which is extended with some
attributes:

- type - indicates the type of abbreviation. Possible values are "contr" - for contraction or "acronym"
for acronyms.

- expan - Possible values are "word"(abbreviation of a word) or "phrase" (abbreviation of phrase).

As subelements of <abbr> we have:

<ph> - phonetics - orthographical representation of the abbreviation.

<expan> - contains the expansion of the abbreviation. When the abbreviations have more than one
meaning, we can have more than one "expan" elements.

<aa> - all analyses -all possible morphological characteristics associated with all expansions.

<ta> - true analyses - morphosyntactic decision for the relevant expansion.

We have applied the grammars in the same way that we listed above. The right order of grammar processing
reflects on the final result. For example if we process grammar for abbreviations with one full stop - "g."

101

will be matched, and than the grammar for abbreviations with two full stops - "t.g." will not be recognized,
because "g." is already marked up.

Example:

1. The text after the tokanization.

 We have four separate tokens:
<tok>t</tok><pt>.</pt>
<tok>g</tok><pt>.</pt>

2. Result after abbreviation grammar applying:
<abbr type="contr" expan="phrase">
<ph>
<tok>t</tok><pt>.</pt>
<tok>g</tok><pt>.</pt>
</ph>
<expan>tazi godina</expan><aa>Noun</aa><ta>Noun</ta>
</abbr>
(This year)

3. Deletion of unnecessary tags <tok> and <pt> with XPath expression: //abbr/ph/tok | //abbr/ph/pt.
We remove only the tags, not their text content and the result is:

<abbr type="contr" expan="phrase">
<ph>t.g.<ph><expan>tazi godina</expan><aa>Noun</aa><ta></ta>
</abbr>

One problem with abbreviations finishing with full stop is that this full stop could be also end of a sentence.
In order to distinguish such full stops, the grammar for the abbreviations adds full stop in the token lists and

changes their markup. Attribute type with value "abbr" indicates such full stops. For example, if we have in
the text abbreviations

<w>str</w><pt>.</pt> (page) and
<w>dr</w><pt>.</pt> (other)

After running the grammar we will have:

 <abbr><ph><tok>str</tok><pt>.</pt></ph>
<expan>stranica</expan><aa></aa><ta></ta></abbr><pt type="abbr">.</pt>

<abbr><ph><tok>dr</tok><pt>.</pt></ph>
<expan>drugi</expan><aa></aa><ta></ta></abbr><pt type="abbr">.</pt>

The grammar rules for the given examples have empty left and right context

RE: <"str">,<".">

RM: <abbr><ph>\w</ph><expan>stranica</expan><aa></aa><ta></ta></abbr>
<pt type="abbr">.</pt>

RE: <"dr">,<".">

RM: <abbr><ph>\w</ph><expan>drugi</expan><aa></aa><ta></ta></abbr>
<pt type="abbr">.</pt>

3.1.2. Acronyms

102

The grammar for acronyms shares the same principle as the grammars for abbreviaions. We have lists with
acronyms and their meaning and grammar features. The difference is in attribute of "abbr" tags - we put type
= "acronym".

Example:

<abbr type="acronym" expan="phrase"><ph>AOK</ph><expan>Armia za osvobojdenie na
Kosovo</expan><aa></aa><ta></ta></abbr>

3.2. Quotation recognition (overlapping hierarchies)

First, we will consider the entirely principles and decisions for quotations. If we analyze all cases of
appearance of the quotation, we will see examples like this:

"The new model of "Ford" was presented yesterday."

The grammar for quotation (quote_gramm), which marks up the sequence of words between two quotation
marks, produces a result like the following:

<q>"The new model of "</q>Ford<q>" was presented yesterday."</q>

Which is not the right segmentation.

For that reason we apply grammar (quote_entity) which marks up the quotations with content of one or two
words. In that case return mark-up tag <q> - has attribute type="entity". After this operation, we apply the

grammar for quotations(quote_gramm). The result is:

<q>The new model of <q type="entity">Ford</q> was presented yesterday.</q>

Usually features matched by this grammar are name entities as well. There is an idea first grammar for
named entities to be processed and then grammar quote_entity over named entities enclosed in quotations.
So if we apply quote_gramm on the following example:

<s> Nikola Nikolov se izvini na jurnalistite ot "24 chasa" i "Standart".</s>

(Nikola Nikolov apologized to the journalists from "24 chasa" and "Standart".)

the produced result will not be the correct one

<s> Nikola Nikolov se izvini na jurnalistite ot "24 chasa

<q type="entity"> i</q>Standart".</s>

if we apply the grammar after the grammar for named entity, the produced result will be correct

<s> Nikola Nikolow se izwini na jurnalistite ot

<q type="entity"> <nameE>24 chasa</nameE></q> i

<q type="entity"><nameE> Standart</nameE></q>.

</s>

The overlapping hierarchies are a well known problem for XML based corpus and are one of the discussed
problems in XCES. This problem is closely connected with the sentence and quotation boundaries. In this
section we show how to implement the XCES Recommendations with the help of the CLaRK System.

The basic level of data model provided by XML is an ordered-labeled tree. And if the document contains the
following markup:

<p>According to the visiting leader, the economy of the country is <q>"better than ever. It is in fact

in very good shape."</q></p>

103

a likely segmentation into sentences would be

<s>According to the visiting leader, the economy of the country is <q>"better than ever.</s><s>It is

in fact in very good shape.</s>"</q></p>

However, this is non well-formed XML since the <s> and <q> tags are not properly nested. There is a basic
approach to the problem of overlapping hierarchies offered by XCES:

Make one of the hierarchies primary and the other(s) secondary, and break any elements of the

secondary hierarcie(s) at those points where they overlap a boundary of the primary hierarchy.

We decided to use CES recommendations for <p> -<s> -<q> hierarchy.

There still is a question: How to implement this within the CLaRK system. We wrote 3 cascaded grammars,

which are processed over result of quote_gramm. We process the first one and than we process second and
third grammars as many times as possible,but with changed ids. They must be processed in the given order
for correct result. Let us consider the following examples:

Example 1) taken from XCES recommendations

<p>According to the visiting leader, the economy of the country is

<q>"better than ever. It is in fact in very good shape."</q>

</p>

Example 2) taken from XCES recommendations

<p>

<q>"I know precisely what you are feeling. I know all about your contempt, your hatred, your

disgust. But don't worry, I am on your side!"</q>

And then the flash of intelligence was gone...

</p>

Example 3) translation from Bulgarian

<p> My favorite ice-cream is <q>"Delta"</q>.</p>

Quote_ref1 grammar

Element value: pt=text() and w=ph/text()

LC:

RE: <"^"">,<"-">?,(<"#"*>|<#>)*,<"."|"?"|"!">

RC: <"-">?,<$CYRwc>

RM: <q id="q1" type="part" next="q2">\w</q>

The regular expression imposes the following constraints over the context:

1 Starts with quotation mark, that can be followed by a dash: <"^"">,<"-">?
2 Contains any number of Cyrillin tokens and punctuation <"#"*> or other elements <#>:

(<"#"*>|<#>)*
3 Ends with full stop, question mark or exclamation mark. <"."|"?"|"!">

As right context there is Cyrillin word with first capital letter: <$CYRwc>

This grammar matches everything from the start of the quotation element - first quotation mark - to first
punctuation - question mark, full stop and so on, which indicates the sentence boundary (see grammar for
sentence boundary below). Recognized sequence can be a sentence (example2) or a part of sentence
(example1). Grammar fails if there are not sentence boundaries in the processed quotation (example3).
Quote_ref2 and Quote_ref3 will fail as well.

104

After applying Quote_ref1 we will have:
1)<p>According to the visiting leader, the economy of the country is

<q>

<q id="q1" type="part" next="q2">"better than ever.</q>

It is in fact in very good shape."

</q>

 </p>

2)<p>

<q>

<q id=q1 type=part next=q2>"I know precisely what you are feeling.</q>

I know all about your contempt, your hatred, your disgust. But don't worry, I am on your side!"

</q>And then the flash of intelligence was gone...

</p>

Quote_ref2 grammar

Element value: pt=text() w=ph/text()

LC: <q id="q1" type="part" next="q2">

RE: <"-">?,(<"#"*>|<#>)*,<"."|"?"|"!">

RC: <"-">?,<$CYRwc>

RM: <q id="q2" type="part" prev="q1" next="q3">\w</q>

The regular expression imposes the following constraints over the context:

1 Can starts with a dash <"-">? - if direct speech
2 Contains any number of Cyrillin tokens and punctuation <"#"*> or other elements <#>:

(<"#"*>|<#>)*
3 Ends with full stop, question mark or exclamation mark. <"."|"?"|"!">

As right context there is Cyrillin word with first capital letter: <$CYRwc>

This grammar recognizes the first sentence in the quotation tag that is not marked up. If the sentence has as
right context (RC) quotation mark grammar fails (example 1), such a sentence will be matched by grammar
Quote_ref3. RC should be beginning of a sentence (word with capital first letter, a number or if it is direct
speech dash followed by number or word with capital first letter)(example 2).
The result will be:

<p>

<q>

<q id=q1 type=part next=q2>"I know precisely what you are feeling.</q>

<q id="q2" type="part" prev="q1" next="q3">I know all about your contempt, your hatred, your

disgust.</q>But don't worry, I am on your side!"

</q> And then the flash of intelligence was gone...

 </p>

Quote_ref3 grammar

Element value:

pt -> text()[not((self::*=".") and (../following-sibling::*[1][self::w[ph/text(4,n,($CYRwc))]]))]
w -> ph/text()

LC: <q id="q1" type="part" next="q2">

105

RE: <"-">?,<$CYRwc>,(<"#">|<#>)*,<"^"">

RC: $$

RM: <q id="q2" type="part" prev="q1" >\w</q>

The regular expression imposes the following constraints over the context:

1 It can start with a dash <"-">? - if direct speech
2 Contains any number of Cyrillic tokens and punctuation <"#"*> or other elements <#>:

(<"#"*>|<#>)*
3 Ends with quotation mark <"^"">

This grammar matches everything to the end of the quotation element (end of every element node is marked

with $$). It will be successful, only if Quote_ref1 succeeds and Quote_ref2 fails(example 1):
<p>According to the visiting leader, the economy of the country is

<q>

<q id="q1" type="part" next="q2" >"better than ever.</q>

<q id="q2" type="part" prev="q1" >It is in fact in very good shape."</q>

</q>

</p>

Quote_ref2 and Quote_ref3 grammars are processed as many times as necessary with changed references

(attributes id next and prev). Let i be a variable, then the LC expression and the return mark-up for both
grammars will be:

LC: <q id="i-1" type="part" next="i">

RM: <q id="i" type="part" prev="i-1" next="i+1">\w</q> (Quote_ref2)

RC: <q id="i" type="part" prev="i-1" >\w</q> (Quote_ref3)

For i=2,3...n

When we have finished with all grammar applying we run removal operation. We delete <q> parent tag and
all quotation marks. The XPath expression for the removal operation is: //q[child::q]

On next turn over example3 Quote_ref2 fails and Quote_ref3 succeeds:
<p>

<q>

<q id=q1 type=part next=q2>I know precisely what you are feeling.</q>

<q id=q2 type=part prev=q1 next=q3>I know all about your contempt, your hatred, your

disgust.</q>

<q id=q3 type=part prev=q2>But don't worry, I am on your side!</q>

</q>And then the flash of intelligence was gone...

</p>

Note that: LC and RM for both grammars must have the same attributes, otherwise quotation element will
not be devided into sentences correctly.

3.3 Sentence boundary

Here we present a simple grammar for sentence boundary delimitation. The tokenizer in this case is Uptok -

described in section 2.2. It recognises a sentence as a sequence of tokens – words, numbers and punctuation

(we refer to the content of <w>, <tok> and <pt> elements with Element Values). As sentence first element
we have a capitalized word or tok element, which is a number. The sentence ends with punctuation – full
stop, question mark or exclamation mark. The sentence can be followed by another sentence or it can be the

106

last one in a paragraph – these features are matched by the right context of grammar. Sometimes the
sentence can be a direct speech – in this case it starts with a dash.

Element Values

The input is a sequence of elements <w>, <tok> and <pt> so we refer to the information, that we are
interested of, by:

w -> ph/text()
tok -> text()
pt -> text()

RE: <"-">?,<$NUMBER+>?, <$CYRwc>,(<($#|<#>)+>|<#>)*,<"."|"?"|"!">+

RC: $$|<$CYRwc>|<$NUMBER+>|<"-">

It is necessary to determine the restriction by right context

This grammar recognizes the sequence of words and punctations, and marks them up. The new tag <s>
(sentence) wraps the whole sequence of nodes.

The grammar for a sentence boundary delimitation marks-up the sequence of some elements that are not
sentences. We first discuss some of the problems for which we have solutions, and then the unsolved yet
cases are pointed out.

Dates

The sentence boundary delimitation grammar matches wrongly some parts of dates. For example if we have

<tok>05</tok><pt>.</pt><tok>08</tok><pt>.</pt><tok>2002</tok>

It matches 05. and 08. as sentences , but they are not.

<s><tok>05<tok><pt>.</pt><s>
<s><tok>08</tok><pt>.</pt></s>
<tok> 2002<tok>

This problem was easy to solve. We have implemented a grammar that marks-up dates (Simov, Kouylekov
and Simov 2002) and it was applied before the grammar for sentences.

Abbreviations

As it was mentioned above in section 3.1.1, we solve one part of the well known problem of sentence
boundary delimitation, namely the case when some abbreviations end with a full stop which also marks the
end of a sentence. The grammar for sentence boundary delimitation will consider also the full stops marked
with attribute value: "abbr" (<pt type="abbr">.</pt>).

For example:

<s>Roden e prez 1928<abbr>g.</abbr><pt type="abbr">.</pt></s><s>Toi e vyzrasten.</s>
(He was born in 1928 year. He is an old man.)

If the abbreviation grammar deletes the full stop of abbreviations then the two sentences will be matched as
one.

If the grammar recognizes some of these full stops as the end of sentences, it will replace their markup with
the markup for the end of the sentence. After the application of the grammar for sentence delimitation, we
run a removal operation to delete all full stops that are part of an abbreviation, but not end of a sentence.

Example:

<s>Kompaniata struvashe 15

107

<abbr>mln.</abbr><pt type="abbr">.</pt>
<abbr>lv.</abbr><pt type="abbr">.</pt>
</s>

 (The price of the company was 15 million leva.)

After removal operation:
// pt[text()="."][following-sibling::*[1][ph/text(1,n,(CYRws))]]

Remove all full stops: pt[text()="."] that are before a Cyrillin word with small letters [following-
sibling::*[1][ph/text(1,n,(CYRws))]]

<s>Kompaniata struvashe 15
<abbr>mln.</abbr>
<abbr>lv.</abbr><pt>.</pt>
</s>

Abbreviated names

Very often in the texts first names appear abbreviated - for example J. Smith. Here we have a word with first
capital letter and a full stop followed by a word with first capital letter – so that is sentence or end of
sentence - <s>J.</s>Smith. To solve this problem we wrote a grammar that matches such names as a part of
the grammar (module) for Named-Entity recognition.

Unsolved problem

One unsolved problem is when one or more sentences are embedded in another sentence.

"I love you!" – she said.

Where must be the mark-up? Is it allowed to have sentence in sentence?

<s><q><s>I love you!</s></q> -she said.</s>

What if there are more than one sentences in quotation, if there are paragraphs? In which cases if so?

A possible decision is when there are more than one sentence in quotations – even a paragraph - they to be
enclosed in <cit> element with attribute type = "part of sentence". The sentence ends where <cit> element
ends.

Another possibility is to allow the sentence to have subsentences (or subparagraphs). If all sentences in the
document are with indexes, each subsentence will have reference to sentence where it belongs to. It will be

allowed to have structure like <s id ="i"> <s type = "subsent" parent = "i"></s></s>

All grammar operations described so far are applied in the following order:

Dates

Abbreviations (all four types are processed)

Acronyms

Abbreviated Names

Quotations

Sentence boundary

Removal operations must be applied after each grammar for the right processing of the following grammars.

4. Writing disambiguation rules

108

As it was mentioned above for text disambiguation we used value constraints, especially Some Children
Constraint (a tool of CLaRK System). It is used for a value restriction when the operation inserting a child

in an element is performed. Constraint in general consists of two parts: A target and a source section.

In target section, the elements to which the constraint will be applied are described (target nodes). First, the
elements are selected by their tag name and then further restrictions by an XPath expression are imposed - a
context dependence can be expressed (for example the node must not have children or certain sibling).

In the restriction section, the possible values for the content of target nodes (selected by the previous
section) are defined. The possible values are XML mark-up or tokens depending on the type of the
constraint. Values can be selected by an XPath expression or by typing the options explicitly as an XML
markup.

It is important to mention that when the context determines only one possible value for some element, it is
added automatically to the content of the target element. In our examples target elements are <ta> elements.

Let us discuss several disambiguation rules with different degrees of complexity:

"che" and "a" after comma

For instance, one simple rule is for "che" and "a" - they can be particle or conjunction. In position after
comma they are always conjunctions.

Before applying the constraint:

<pt>,</pt>
<w><ph>che</ph><aa>Conjunction;Particle<aa><ta></ta></w>

After applying:

<pt>,</pt>
<w><ph>che</ph><aa>Conjunction;Particle<aa><ta>Conjunction</ta></w>

We have restricted the cases only for "che" after a comma. Other appearances of the word "che" is still
ambiguous.

Target element is given from Selector section, restrictions for the target element are described in Context

section and value for the target element is given in Value (restriction section), as it was mentioned, it can be
selected by XPath or can be given as an XML mark-up directly:

Selector: ta

Context: not(child::*) and preceding-sibling::ph[text()="che"]

and ../preceding-sibling::*[1][self::pt[text()=","]]

Value: Conjunction

The context description imposes the following constraints over it:

1 The <ta> element is empty: not(child::*)
2 The word is "che": preceding-sibling::ph[text()="che"]
3 The previous token in the sentence is a comma: ../preceding-sibling::*[1] [self::pt[text()=","]]

Agreement-based constraints:

Using XPath language for context describtion allows writing more complecated rules like the following for
dealing with agreement in NP.

109

The agreement phenomenon can be seen in chunks like Noun phrases where we have adjective in first
position and it is followed by noun. The adjective agrees with the noun. If the noun is not ambiguous we can
easily choose the right grammatical form of the adjective.

Example:

"Bylgarski ezik" (Bulgarian language)
"Bylgarski detza" (Bulgarian children)

<ph>Bylgarski<ph><aa>"Adjective, masculine, singular" or "Adjective, plural"</aa>
<ph>ezik</ph><aa>"Noun, masculine, singular "</aa>

<ph>Bylgarski<ph><aa>"Adj, masculine, singular" or "Adj., plural"</aa>
<ph>detza</ph><aa>"Noun plural"</aa>

We wrote constraints that automatically disambiguate these cases.

Selector: ta

Context: not(child::*) and ../aa[text()=Adjective, masculine, singular ;Adjective, plural]
and ../following-sibling::*[1][self::w/aa[text()="Noun, masculine, singular "]]

Value: Adjective, masculine, singular

The context description imposes the following constraints over it:

1 The <ta> element is empty: not(child::*)
2 The <aa> element of selected word contains two values - Adjective, masculine, singular and

Adjective, plural:
../aa[text()=Adjective, masculine, singular ;Adjective, plural]

1 The next token in the sentence is a noun masculine, singular:
../following-sibling::*[1][self::w/aa[text()="Noun, masculine, singular "]]

Restrictions are – not to have children (ta element), its parent – element w to be followed by a word element
which is Noun, masculine, singular. This is given by XPath expression:

not(child::*) and ../aa[text()=Adjective, masculine, singular ;Adjective, plural]

and ../following-sibling::*[1][self::w/aa[text()="Noun, masculine, singular "]]

In the restriction section we will have XML markup "Adjective, masculine, singular "

During the manual disambiguation of word-forms we have used more than 50 constraints.

In a document 12% are unrecognized words – abbreviations, names and other words that are not in
morphology. From the rest 65.95 % are unambiguous and 34.05% are ambiguous. 15.80 % from the
ambiguouty can be resolved by constraints and grammars.

5. Using Temporary Mark-up for disambiguation

We already demonstrated the use of grammars, additional mark-up and removal operation in order to solve
some problems. Here we demonstrate the use of grammars, constraints and removal operations for automatic
disambiguation.

There are some sequences of words that can be automatically disambiguated if they form appropriate
linguistic structure. Sometimes such sequences of words cannot be constituents, and their eventual grouping

110

is not part of the analysis of the sentences, then we mark them only temporarily. In this case we proceed in
the following way. First we write a grammar that groups together such sequence of words and marks them
up in an appropriate way. Then we run a group of constraints that disambiguates the words within such a
sequence of words. After the constraints, we run a removal operation to delete the group markup.

An example of such a case is the so-called 'da'-construction in Bulgarian. It includes the conjunction 'da', a
number of clitics and a verb form in present tense. 'Da' is ambiguous between a conjunction and a particle,
but within such groups it is only a conjunction. Most of the clitics are ambiguous between personal
pronouns and possessive pronouns, but in this context they can be personal pronouns only. The verb can
only be in the present tense. Using such a mechanism, we succeeded to reduce the number of ambiguities
with more than 10%.

<dacomplex>
<w><ph>da</ph><aa>Conjunction or Particle</aa></w>
<w><ph>mi</ph><aa>Pronoun (personal or possessive) ;Verb</aa></w>
<w><ph>ja</ph><aa>Interjection; Particle or Personal pronoun</aa></w>
<w><ph>dade</ph>Verb – present or past tense</w>
</dacomplex>
(To give it to me)

Linguistic decisions for "da – complex":

We used the similar grammar for "shte"[particle for future tense]. We applied the same solutions for clitics
and verb as in "da-complex".

<shte-complex>
<w><ph>shte</ph><aa>Particle</aa></w>
<w><ph>mi</ph><aa>Pronoun (personal or possessive) or Verb</aa></w>
<w><ph>ja</ph><aa>Interjection; Particle or Personal pronoun</aa></w>
<w><ph>dade</ph>Verb – present or past tense</w>
</shte-complex>
(He/She will give it to me)

We annotated grammatical characteristic with usage of constraints and after this action, we ran a removal
operation to delete group markup <dacomplex> and <shte–complex>.

We remove this tags because they do not always mark-up real grammatical constituents. That is why we call
them temporal mark-up. In some cases the sequence of elements in da or shte -complex are equal to a "verb
complex" and provides a true sentence analysis, but in other cases like:

Toj trjabva da mi e dal knigata.

(He must have given me the book)

The da-complex grammar will mark up only one part of verb complex:

<s>Toj trjabva <dacomplex>da mi e</dacomplex> dal knigata.</s>

The syntactic treatment of these verb complecsses is done by other grammars complecsses is done by other
grammars within the project. The result is something like:

<s>Toj <Vm>trjavba<Vm><Vcomplex>da mi e dal</Vcomplex> knigata.</s>

111

Another example of problematic case is when there is a coordination between two verbs

<s>Kaji i da proveri i sybshti kakvi sa usloviqta.</s>

(Tell her to check and let us know what the conditions are.)

Our da-complex grammar will mark up

<s>Kaji i <da complex>da proveri<da complex> i sybshti kakvi sa usloviqta.</s>

That is only a part of the coordinate phrase <dacomplex>da proveri i syobshti</dacomplex>.

This is why we use our grammar only for disambiguation purposes and afterwards we delete the changes
made by it. Using temporarily mark-up is very powerful tool.

6. Conclusion

The compilation of a text archive is connected with the appropriate recognition of all meaningful elements,
i.e. not only common word tokens, but also named entities (person names, organization names, dates,
currency expressions), abbreviations, punctuation. The efficient handling of these preprocessing steps
proved out to be of great importance for the consistency of next parsing stages and, at the same time, for
data mining. Thus it facilitates earlier direct use of the text archive.

In recent years the existence of syntactically interpreted corpora has become a crucial prerequisite for the
development of the linguistic theories and the variety of NLP application tasks. In this paper we presented
some tools and an algorithm for resolving ambiguity and minimization of human work.

Algorithm:

Applying cascade grammars over selected documents – this includes tags or data adding

Applying constraints (in grammar result) if this operation is necessary – one sufficient action to
minimize the ambiguity

Remove useless data

The examples that we have given demonstrate how the usage of different grammars and constraints improve
the manual disambiguation of texts. The Tools of CLaRK system help us to create an XML-based corpus of
morphologically annotated texts.

References

Abney, S., 1991. Parsing By Chunks. In: Robert Berwick, Steven Abney and Carol Tenny (eds.), Principle-
Based Parsing. Kluwer Academic Publishers, Dordrecht. The Netherlands.

Abney, S., 1996. Partial Parsing via Finite-State Cascades. In: Proceedings of the ESSLLI'96 Robust Parsing
Workshop. Prague, Czech Republic.

Corpus Encoding Standard. 2001. XCES: Corpus Encoding Standard for XML. Vassar College, New York,
USA. http://www.cs.vassar.edu/XCES

Ide N., Romary, L. (2001). Standards for Language Resources. IRCS Workshop on Linguistic Datebases.
Philadelphia. USA.

Ide N., Romary, L. (2001). A Common Framework for Syntactic Annotation. Proceedings of ACL'2001,
Toulouse. France.

112

Mikheev, A. 2000. Tagging sentence boundaries. In Proceedings of the 1st Meeting of the North American
Chapter of the Computational Linguistics (NAACL'2000).

Popov, D., Simov, K. and Vidinska, S. A Dictionary of Writing, Pronunciation and Punctuation of Bulgarian
Language, Atlantis SD, Sofia, Bulgaria.

Simov Kiril, Peev Zdravko, Kouylekov Milen, Simov Alexander, Dimitrov Marin, Kiryakov Atanas.
CLaRK an XMLbased System for Corpora Development. In: Proc. of the Corpus Linguistics 2001
Conference. Lancaster. UK.

Simov K., Osenova P., Slavcheva M., Kolkovska S., Balabanova E., Doikoff D., Ivanova K., Simov A.,
Kouylekov M. 2002: Building a Linguistically Interpreted Corpus of Bulgarian: the BulTreeBank. In
Proceedings from the LREC 2002, Canary Islands. Spane

Simov K., Kouylekov M., Simov A 2002. Cascaded Regular Grammars over XML Documents. In: Proc. of
the 2nd Workshop on NLP and XML (NLPXML-2002), Taipei, Taiwan.

Osenova P. and Simov K. 2002. Learning a token classification from a large corpus. (A case study in
abbreviations). In: Proc. of the ESSLLI Workshop on Machine Learning Approaches in Computational
Linguistics, Trento, Italy.

Text Encoding Initiative. 1997. Guidelines for Electronic Text Encoding and Interchange. Sperberg-
McQueen C.M., Burnard L (eds).

XPath. 1999. XML Path Language (XPath) version 1.0. W3C Recommendation.
http://www.w3.org/TR/xpath

113

