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Preface

The Twelfth International Workshop on Treebanks and Linguistic Theories (TLT12) is held in Sofia, 
Bulgaria. Thus, after eleven years, it is returning to Bulgaria, where the first installment took place in 
2002. Since this first workshop on the Black Sea coast, the TLT series has come a long way, and has 
become a venue for research on technical and linguistic issues involved in treebanking, as well as the 
usage of treebanks in Linguistics and Computational Linguistics. The workshop series has seen 
influential papers, such as the description of the TIGER Treebank (2002) and the Ancient Greek 
Treebank (2009). However, over the last decade, the workshop also became broader in its scope, 
including other levels of annotation such as frame semantics, co-reference, or events, to name only a 
few.

The program of TLT12 showcases this development. Both invited talks take a broad perspective into 
the issues of language resources. Antonio Branco focuses on meta-reliability factors in NLP, while 
Stefanie Dipper addresses the annotation specificities of historic corpora. The various topics at the 
workshop include: handling difficult linguistic phenomena, such as coordination classification in 
English (Wolfgang Maier and Sandra Kübler) or auxiliary fronting in German (Erhard Hinrichs and 
Kathrin Beck); minimizing human efforts in tree disambiguation of Polish (Katarzyna Krasnowska 
and Witold Kieraś), in multiword expression disambiguation tasks for English (Valia Kordoni), in 
treebank expansion for Hindi (Naman Jain et al.) and for Persian (Masood Ghayoomi and Jonas 
Kuhn); looking at annotator agreement for Norwegian (Helge Dyvik et. al); combining different 
parsers for achieving better syntactic processing for Bulgarian (Kiril Simov et al.) or for more 
efficiently detecting annotation-related errors with results for Urdu and Hindi (Narendra Annamaneni 
et. al); tools and methodologies for exploring treebanks, such as the TÜNDRA web tool, used for 
queries over the German TüBa-D/Z Treebank (Scott Martens), the methodology for reformatting the 
treebanks, tested on the Penn Treebank (Archna Bhatia et al.) or the approaches to the creation of 
reliable user-oriented “corpus research databases” (Erwin R. Komen)

This year’s TLT features two invited talks, 12 regular papers, and a round table discussion on the 
future of treebanks. The round table is intended as a forum for researchers in the field to discuss and 
establish future directions for research on the intersection of treebanks, linguistic theories, and 
applications. It will help the workshop organizers of future TLTs to target a wider audience, and our 
hope is that it will also foster new, interdisciplinary research collaborations.

We would like to cordially thank all people: who are involved in organizing the workshop, who 
submitted papers, who did the reviewing, and who are participating in the round table. We hope you 
enjoy the workshop and the proceedings!

Sandra Kübler, Petya Osenova, Martin Volk

iii



Workshop Organization

Invited Speakers
Stefanie Dipper, University of Bochum, Germany
Antonio Branco, University of Lisbon, Portugal

Program Chairs
Sandra Kübler, Indiana University, USA
Petya Osenova, Sofia University, Bulgaria
Martin Volk, University of Zurich, Switzerland

Program Committee
Yvonne Adesam, Gothenburg University, Sweden
Eckhard Bick, University of Southern Denmark, Denmark
Johan Bos, University of Amsterdam, The Netherlands
António Branco, University of Lisbon, Portugal
Koenraad De Smedt, Bergen University, Norway
Markus Dickinson, Indiana University, USA
Stefanie Dipper, Bochum University, Germany
Dan Flickinger, Stanford University, USA
Georgi Georgiev, Ontotext, Bulgaria
Anne Göhring, University of Zurich, Switzerland
Eva Hajičová, Charles University, Czech Republic
Iris Hendrickx, University of Nijmegen, The Netherlands
Erhard Hinrichs, University of Tuebingen, Germany
Valia Kordoni, Humboldt University, Germany
Amalia Mendes, University of Lisbon, Portugal
Detmar Meurers, University of Tuebingen, Germany
Yusuke Miyao, University of Tokyo, Japan
Kaili Muurisep, Tartu University, Estonia
Kemal Oflazer, Carnegie Mellon University, Qatar
Sebastian Padó, Heidelberg University, Germany
Marco Passarotti, Catholic University of the Sacred Heart, Italy
Kiril Simov, IICT-BAS, Bulgaria
Adam Przepiórkowski,Polish Academy of Sciences, Poland
Victoria Rosén, Bergen University, Norway
Caroline Sporleder, Saarland University, Germany
Manfred Stede, University of Potsdam, Germany
Gertjan van Noord, University of Groningen, The Netherlands
Heike Zinsmeister, Stuttgart University, Germany

Local Committee
Petya Osenova, Sofia University
Kiril Simov, IICT-BAS
Stanislava Kancheva, Sofia University
Georgi Georgiev, Ontotext
Borislav Popov, Ontotext

iv



Table of Contents

Narendra Annamaneni, Riyaz Ahmad Bhat, Dipti Misra Sharma
Ensembling Dependency Parsers for Treebank Error Detection

1

Archna Bhatia, Michael Deeringer, Matthew Gardner, Carlos 
Ramírez, Lori Levin, Owen Rambow
Repurposing Treebanks

13

António Branco
Reliability and Meta-reliability of Language Resources

27

Helge Dyvik, Martha Thunes, Petter Haugereid, Victoria Rosén, Paul 
Meurer, Koenraad De Smedt, Gyri Smørdal Losnegaard
Studying Interannotator Agreement in Discriminant-based Parsebanking

37

Masood Ghayoomi, Jonas Kuhn
Sampling Methods in Active Learning for Treebanking

49

Erhard Hinrichs, Kathrin Beck
Auxiliary Fronting in German: A Walk in the Woods

61

Naman Jain, Sambhav Jain, Dipti Misra Sharma
Minimizing Validation Effort for Treebank Expansion

73

Erwin R. Komen
Corpus databases with feature pre-calculation

85

Valia Kordoni
Annotation and Disambiguation of English Compound Units in the English  
DeepBank

97

Katarzyna Krasnowska, Witold Kieraś
Polish LFG treebank on a shoestring

109

Wolfgang Maier, Sandra Kübler
Are All Commas Equal? Detecting Coordination in the Penn Treebank

121

Scott Martens
TüNDRA: A Web Application for Treebank Search and Visualization

133

Kiril Simov, Ginka Ivanova, Maria Mateva, Petya Osenova
Integration of Dependency Parsers for Bulgarian

145

v



vi



Ensembling Dependency Parsers for Treebank
Error Detection

Narendra Annamaneni, Riyaz Ahmad Bhat and Dipti Misra Sharma
Language Technology Research Centre, IIIT-Hyderabad, India

{narendra.annamaneni, riyaz.bhat}@research.iiit.ac.in, dipti@iiit.ac.in

Abstract

This paper describes a statistical approach to detect annotation errors in
dependency treebanks. The approach is based on the ensembling of state-
of-the-art dependency parsers. We see the motivation from the fact that if
a parse, favoured by the parsers, contradicts human annotation, the contra-
diction either questions the consistency of the corpora on which the parsers
were trained or the given human annotation is an error. We also prioritize the
detected errors based on the confidence score values. The reported results
(F-score) of our approach on the Urdu and Hindi treebanks are 41.20% and
69.37% respectively.

1 Introduction

The need for annotated corpora is widely acknowledged in the field of compu-
tational linguistics. Due to their importance for basic as well as advanced NLP
applications, the last decade has seen a nearly exponential increase in the cre-
ation of these linguistic resources in a wide range of languages. These corpora
are mainly manually annotated. The annotation process, however, can also be
semi-automated. In either way, in the process of annotation, errors creep in due
to various reasons which make these corpora inconsistent and less suitable for use.
It has been noted that, the inconsistency and the errors in the annotated corpora
limit their usage for reliable natural language processing [25]. Annotated corpora
are desired to be consistent and error free for an optimal use. To overcome the
problem of inconsistency, these resources are usually manually validated. How-
ever, manual validation is an expensive task both in terms of time and cost. In this
context, we need tools which can assist experts by automatically detecting anoma-
lies (potential errors).

Lately there have been some efforts towards building linguistic resources for
Indian Languages. The main focus has been on building syntactic treebanks for
Hindi and Urdu. This paper addresses the issue of consistency in these treebanks.
We propose an approach for automatically detecting dependency errors in two of
these treebank namely Hindi [11] and Urdu [9]. We use state-of-the-art dependency

1



parsers to detect errors in the aforementioned treebanks. The ensembling of these
parsers is used to detect errors assuming that they will only agree on a parse if
they had learned from a more or less consistent corpora. We also prioritized the
detected errors based on the confidence score so that experts can actually validate
those errors based on their priority. Even though we have reported on these two
languages only, our approach can be easily adopted to any language.

The rest of the paper is organized as follows. Related work is described in sec-
tion 2.In section 3, we describe our approach to detect errors using MaltParser1,
MstParser2 and TurboParser3. Section 4 describes treebanks and data used in our
experiments. Section 5 gives the details of experiments conducted and results ob-
tained. Section 6 adds the discussion and future work. Section 7 concludes the
paper.

2 Related Work

There has been an active research in this direction over last decade. Validation
tools were built which detect inconsistencies in annotated corpora automatically.
One such approach was proposed by [13] which uses variation n-grams to detect
inconsistencies in constituency-based treebanks. Later it was extended to discon-
tinuous constituency annotations in [14]. There have been some earlier efforts to
detect anomalies in syntactic annotation mainly POS and Chunk by [15] and [25].
[26] proposed approach to produce gold standard parsed data automatically. Other
note worthy approaches in the field of error detection are methods proposed in
these works [12, 18].

In the context of Indian languages earlier effort on error detection was made
by [5] which uses statistical module and rule based post processing module com-
binedly to detect anomalies. The statistical module used in the system is FBSM
(Frequency Based Statistical Module) which uses frequencies to detect errors in
a treebank. Later [3] proposed a different statistical module PBSM (Probability
Based Statistical Module) to overcome data sparsity limitation existed in FBSM.
Both the aforementioned methods use the rule based post processing module which
uses robust rules derived from annotation guidelines and CPG framework. The
role of this rule based system is to increase the precision. [1] extended the previ-
ous work further by replacing PBSM with EPBSM (Extended Probability Based
Statistical Module). The statistical module in the aforementioned methods is not
successful to learn the existing consistencies in a treebank. Recently [2] used a
Maltparser to detect inconsistencies in treebank. In our approach we try to en-
semble the available state-of-the-art dependency parsers to exploit the consistency
in an annotated corpora. Our experiments are conducted on the Hindi and Urdu
treebanks. The proposed system is able to detect errors across the entire treebanks.

1http://www.maltparser.org
2http://maltparser.org
3http://www.ark.cs.cmu.edu/TurboParser/
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3 Our Approach

In order to present our approach, we will first discuss what differentiates error from
inconsistency in an annotated corpora. The notion of consistency is related to the
frequency of a linguistic object annotated i.e., if a markable is frequently anno-
tated with similar information, the annotation can said to be consistent, while error
is a notion relative to the annotation guidelines or the linguistic theory. Both the
notions have, however, a strong dependence on each other. In principle, an error
free corpora will also be consistent. However, a consistent annotation in a corpora
can either be an error (deviation from guidelines) or a valid annotation. An in-
consistent annotation, on the other hand, is less probable to be a valid annotation
(exception could be some infrequent phenomena). In this work, we will address
the issue of consistency in dependency treebanks. The problem of inconsistency
could be due to various reasons like subjectivity, fatigue of annotators and instabil-
ity of the annotation scheme. Issues like subjectivity and instability of guidelines
depend on the maturity of the annotation project. Over time annotators mature in
their decisions and the guidelines become stable. On the other hand, the issue of
fatigue or heedlessness will always pose a problem. However, fortunately the issue
of fatigue is observed to be an infrequent phenomena. The errors that creep in be-
cause of it would be highly skewed. Our assumption is that such issues have less
bearing on the statistical predictions that a parser makes. We assume that a parser
will learn the consistent annotations in a learner corpora and prune out the skewed
inconsistencies. To this end, we have used three state-of-the-art statistical parsers
namely Malt, MST and Turbo which use different learning and parsing strategies.
We pool the predictions of these parsers to locate the errors in a treebank. In the
next section, we will discuss our approach in detail.

3.1 Error Classification

For the purpose of our task, we use the three dependency parsers based on some
compelling references which made us choose these parsers over the other existing
parsers in the field. MaltParser [22] has been reported to be the best performing
parser for Indian languages [8]. MST parser is reported as the second best parser
as far as its performance of parsing Indian languages is concerned [4, 8]. The third
parser that we choose to work with is Turbo parser [20]. [19] has reported it to give
the state of the art results in Hindi parsing. Thus, our choice of these parsers is
based on their performance of parsing Indian languages. In Section 5, we discuss
the settings of these parsers in detail. We choose to test our approach on two almost
stable Indian language treebanks namely the Hindi treebank and the Urdu treebank
that are being developed parallelly. In Section 4, we will give a detailed overview
of these treebanks. In order to detect errors across these treebanks, we use N-fold
cross validation strategy to parse the entire treebanks. We have restricted N to 4 in
this work. Using our strategy both the treebanks are parsed with the three parsers.
Confidence score of a label is also computed in case of the Malt and MST parser
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[21, 17]. After getting the parsed outputs of all the three parsers, we identify the
errors based on the error detection strategy discussed in the following.

• Type 1: Type 1 errors are label errors defined based on the mismatch be-
tween the parsers and the human annotation. If the dependency label anno-
tated by a human differs with the parsers, given that the parsers don’t differ
among themselves, the dependency label is treated as a possible error. How-
ever, there is no disagreement on the attachment among the parsers and the
human annotation.

• Type 2: Type 2 errors are also label errors based on the confusion among
all the parsers and human annotation. If the attachments marked by all the
parsers and the human annotation agree on the same attachment and the de-
pendency labels marked by all the parsers differ among themselves and differ
with the human annotation,the dependency label is treated as a possible er-
ror. Even if any of the two parsers agree on the same label and differ with
the label marked by the third parser and with the human annotation, the
dependency label is treated as a possible error. The point here is that the
disagreement among all the parsers and human annotation gives a clue that
there is some confusion in a given instance, thus there is a possibility that
human annotation can be an error. The confusion here can be due to rare
occurrence of the given instance or lesser context.

• Type 3: Type 3 error cases are arc errors defined based on the mismatch
between all the parsers and human annotation. If the attachment annotated
by the human differs with the attachment which all the parsers are agreeing
on, that attachment is treated as a possible error. The point here is that since
all the parsers agree on the same attachment based on consistency in the
treebank, it may be possible that the human annotated attachment is either
an exception or an error. However, there is no condition on the labels marked
by all the parsers and human annotation. We can’t conclude anything if we
compare the labels without the attachment agreement.

• Type 4: Type 4 errors are arc errors defined on the basis of the confusion
among all the parsers and human annotation. If the attachments marked by
all the parsers differ among themselves and all of them differ with the human
annotated attachment, the attachment is treated as a possible error. Even if
any of the two parsers agree on the same attachment and differ with the
attachment marked by the third parser and with the human annotated, the
attachment is treated as a possible error.

3.2 Prioritising the Errors

After detecting possible error cases in a treebank, the errors are prioritized based on
the corresponding confidence scores calculated using MST parser and Malt parser.
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The main aim of using the confidence scores is to further strengthen the possibility
of a markable as an error and thus to prioritize them for validation. If the con-
fidence scores produced by Malt and MST parsers, corresponding to Type 1 and
Type 3 error cases are higher than a threshold4, the probability of these cases being
errorneous increases twofold. Not only are the parsers agreeing upon their parsed
output but they are also confident about it. In case of other error types like Type 2
and Type 4, the lack of agreement among the parsers over a parse suggests some
inherent confusion in it, the low confidence scores below the threshold5 further
support the confusion in that particular parse, thus the possibility of such a parse
being errorneous is increased. In this way, we prioritize the validation of detected
errors in the treebank.

4 Treebanks

In this section, we give an overview of Indian Language treebanking. Currently
dependency treebanks for four ILs, namely Hindi, Urdu, Bangla and Telegu, are
under development. These treebanks are currently being developed following the
annotation scheme based on the Computational Paninian Grammar (CPG) [6]. Ac-
cording to CPG, dependency relations, are marked between chunks. A chunk is
a minimal, non-recursive structure consisting of a group of closely related words.
Thus, in these treebanks a node in a dependency tree is represented by a chunk in-
stead of a word. In these treebanks, dependency relations are mainly verb-centric.
The relation that holds between a verb and its arguments is called a ‘karaka’ re-
lation. Besides karaka relations, dependency relations also exist between nouns
(genitives), between nouns and their modifiers (adjectival modification, relativiza-
tion), between verbs and their modifiers (adverbial modification including subordi-
nation). CPG provides an essentially syntactico-semantic dependency annotation,
incorporating karaka (e.g., agent, theme, etc.), non-karaka (e.g. possession, pur-
pose) and other (part of) relations. A complete tag-set of dependency relations
based on CPG can be found in [7]. The ones starting with ‘k’ are largely Paninian
karaka relations, and are assigned to the arguments of a verb.

In this work, we address the issue of consistency in Hindi and Urdu treebanks.
The Urdu treebank used here is under development. The Hindi treebank data we
used here is the part of the larger Hindi treebank. We used the same Hindi treebank
data used by [2]. The sizes of Hindi and Urdu treebanks used in our experiments
are 67k and 160k respectively. The statistics of the treebanks used in our experi-
ments are given in Table 1.

4Thresholds for Malt and Mst are 59% and 63%
5The lower bounds of thresholds for Malt and MST are 18% and 30%

5



Language Sentences Words / Sentences Chunks /Sentences
Hindi 2869 12.82 7.95
Urdu 5230 13.17 8.17

Table 1: Table 1: Treebank Statistics

5 Experiments and Results

As discussed earlier, we are using three state-of-the-art dependency parsers in a
stacked settings, for the task of error detection in Hindi and Urdu Treebanks. In
this section, we first discuss the settings of these parsers and then give a detailed
account of the results achieved using parser ensembling. We carried out our ex-
periments with Malt, MST and Turbo parsers with the best possible settings pro-
posed in the literature, on Hindi and Urdu parsing. In case of Malt parser, we used
"nivreeager" algorithm and "LIBSVM" learner and same features settings proposed
in [16] and [24]. Since both the Hindi and Urdu treebanks contain a considerable
number of non-projective structures [10], we used the pseudo-projective algorithm
as proposed by [23]. For Turbo parser, we used the settings proposed by [19]
and we run the parser with basic mode for both Hindi and Urdu. In case of MST
parser,settings that performed are second order non-projective with beam width (k-
best parses) of 5 and default iterations of 10 which are taken from [4]. Apart from
the basic parser settings, we also added a module in MST and Malt parsers to get
the confidence scores for the dependency labels based on the methods proposed in
[21, 17]. The parsing accuracies are reported in Table 2. Our results are in confor-
mity with the earlier results on Hindi and Urdu found in the literature.

Language Parsers LAS (%) UAS (%) LAcc (%)
Malt 78.23 90.74 80.77

HINDI MST 65.68 86.68 68.02
Turbo 77.23 89.88 79.78

Malt 74.45 87.45 77.92
URDU MST 64.35 85.59 67.65

Turbo 74.05 86.65 77.71

Table 2: Table 2: Parsing Accuracies.

In Section 3, we defined the basis of our approach for error detection using
parser ensembling strategy. We also defined a detailed schema for identification
of different error types. Next, we discuss the identified errors using our approach
and evaluate their correctness. To evaluate our approach, we extracted test samples
from both, the Hindi and the Urdu treebank. 323 sentences and 100 sentences
of varied lengths were extracted from the Hindi and Urdu treebanks respectively,
and were validated by the expert annotators. On these sentences, errors identified
by our approach evaluated against the corresponding validated annotations. The
results are listed in Table 3 on both the Hindi and Urdu test sets.
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Once the possible errors identified, we prioritized them based on the confusion
scores given by Malt and MST parsers. If an identified error has a confusion score
higher than a threshold, we can be sure about it being an error. This helps us
to prioritize the most likely errors for the validation. This is important in a case
where the whole treebank needs validation and the detected errors are too many for
a trivial validation.

Category Hindi Urdu
Type 1 206 162
Type 2 123 168
Type 3 150 121
Type 4 33 20

System Output 512 472
Identified 340 130

Gold Errors 468 159

Precision 66.40 27.54
Recall 72.64 81.76
F-score 69.37 41.20

Table 3: Table 3: Results on Urdu/Hindi Treebanks

After the identification of inconsistencies, we observed some of the interesting
patterns in the identified errors. As shown in Table 3, almost 70% of the identified
Type 1 errors are actually gold errors. It supports our hypothesis that parsers agree
only if an annotation is consistent enough in the treebank. Thus, it favors the
ensembling of parsers for error detection. Another interesting fact is that some of
the false-positives in Type 1 errors are very close cases. It is observed that even for
experts, some of these cases are thought-provoking. Accurate annotation of these
cases needs a proper understanding of the annotation guidelines and particularly,
a deeper understanding of the language under study. One of the major issues in
the creation of a treebank for any language is evaluating annotator’s understanding
and training them accordingly with the critical cases as per annotation guidelines.
We observed that most of the false-positive cases of Type 1 are in fact critical
or tough annotation cases. Thus these cases can be utilized to train or evaluate
annotators. In case of Type 2 errors the number of actual gold errors are not high.
The observation of false-positives of Type 2 errors makes it clear that the validation
time taken for these cases is low as experts can easily ignore the unintuitive errors
detected. However, the number of gold errors in Type 2 may vary for corpora,
based on the annotator’s understanding. Most false-positives in Type 2 resulted
from data sparsity. This type of errors affect the precision of the system badly.
Type 3 and Type 4 errors are detected based on the attachment. Generally, in
dependency annotation annotators are good at annotating attachments compared to
label annotation. As expected, these two types contain lesser number of gold errors
compared to Type 1, but still in some inconsistent cases they identified good cases
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of possible errors.

6 Discussion and Future Work

We have explored a different approach compared to previous efforts in error de-
tection in annotated corpora. The approach is language independent. We have re-
ported results on the Hindi and Urdu treebanks. The results (Recall) of our system
on these treebanks are 73.42% and 81.76% respectively as shown in Table 3. Re-
sults reported by previous efforts using statistical approach on the Hindi treebank
using huge training data (290k) is 73.12%. After combining with rule based system
they are able to achieve 81.49% as in [1]. Our results are comparable to statistical
system performance in spite of low training data in our case. The system outper-
formed in case of the Urdu treebank inspite of having relatively lesser training data
(160k) compared to the Hindi training data (290k) used in the earlier approach. We
detected errors across the treebank and then for evaluation we picked errorneous
cases randomly from the entire treebank whereas in case of previous efforts all the
evaluation results are reported on separate training data and testing data, thus re-
sults reported by our system are consistent compared to previous methods. Type 1
cases detected by the system can be utilized to constantly improve the annotation
guidelines and to resolve some of the ambiguities. The system is limited by the
available state of the art parsers. Apart from the detection of inconsistencies in the
treebanks, we also prioritized them based on the confidence scores, which helps
experts to validate errors more effectively. Data sparsity problem is a limitation
due to which parsers are unable to learn the consistencies in the treebanks widely.
Our future work includes detecting these cases using the parsers confidence score
effectively. Our future work also includes handling sparsity issue by considering
coarse label set at higher granular level. We also plan to embed the rule based sys-
tem which uses robust rules specific to annotation guidelines and to a language as
referred in [1].

7 Conclusion

We proposed a fully automated and a language independent approach to detect
inconsistencies in dependency treebanks. The proposed system is able to detect
81.76% of existing errors in Urdu treebank and 72.64 % of existing results in a data
which is part of the Hindi treebank. The inherent limitations of the system proposed
are the infrequent cases. We proposed the prioritization of errors identified by
our system which further enhances the validation process. The detected errors are
also categorized apart from prioritization which helps experts in the process of
validation. The use of confidence scores to detect inconsistencies in a treebank
will be the focus of our future work.
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Abstract

This paper describes a methodology for efficient revision and reformatting
of treebanks. The basic unit of revision is a local subtree (a parent node
and its immediate children). The treebank is first broken down into a list
of unique types of local subtrees and then the head daughter is specified for
each unique type. We tested the approach on the English PTB. We believe
that this type-based approach is an efficient way to annotate head daughters
and dependencies. In the course of doing this work, we have produced an
annotation tool for identifying head daughters in local sub-trees. We have
also produced a gold standard for head selection that covers 90% of tokens.
The gold standard can be used for training head rules, and can easily be
revised for trying alternate approaches to headedness in the treebank.

1 Introduction

The attendees at this conference are all aware that treebanking is a labor-intensive
process even when semi-automated. Consequently, a treebank may have a long
life span without change. However, trends in linguistics and language technologies
are constantly changing, and it may be desirable to rejuvenate a treebank without
having to completely rebuild it from scratch.

Interoperability is a recent trend that calls for large scale revision of treebanks.
It refers to the use of common tag sets such as part of speech tags and dependency
labels as well as common treatments of constructions such as coordinate structures.
Interoperability is desirable for computational processing of treebanks.

Linguistically oriented projects have fostered interoperability under the guise
of a linguistic theory. The Prague treebanks are interoperable with each other
based on the Prague School of linguistics. Pargram [12] is another project that
has resulted in interoperable treebanks and grammars based on Lexical Functional
Grammar. However, treebanks from one linguistic theory are not necessarily in-
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teroperable with another. What if we want to start with diverse treebanks from
different research groups and make them interoperable?

Two recent efforts on interoperability are the Prague HamleDT [15] project and
Google’s universal dependency labels for cross-linguistic transfer parsing project [10].
Tsarfaty [13] has also proposed a universal set of dependency labels but also allows
the dependency labels to have sub-types to allow for typological variation. Ham-
leDT has proposed standards for several constructions such as coordinate struc-
tures [15, 11] and has interoperationalized 29 treebanks from other projects [15].

The project we are reporting on in this paper is called “Syntax based on a Uni-
versal Predicate-Argument Representation” (SUPA). It is also concerned with in-
teroperability in treatment of dependency labels and constructions, and also hopes
to eventually convert many treebanks with different theoretical frameworks into
SUPA, a dependency representation, and hence make them interoperable. How-
ever, we would like to suggest that interoperability will not be a one time event, but
may happen many times in the life of a treebank. We do not believe that there is
any one tagset or treatment of constructions that is optimal for every computational
application that employs treebanks.

This paper describes one experiment in treebank conversion, conducted within
the SUPA project. It involves a conversion of the Penn English Treebank (PTB) to
the SUPA dependency format. We did not follow the standard approach of using
complete sentences only as test suites for conversion from phrase structure to de-
pendency format. Instead we followed a type-based approach to create test suites
for, e.g. head selection (where each type is a unique local subtree found in PTB),
and making a gold standard for them for testing during the conversion from phrase
structure to dependency format. Our type based approach was originally intended
to contribute to a more careful formulation of head rules [7, 3, 5], as we had found
during the conversion process that the head rules used earlier did not necessarily
always select the correct heads (in fact there were quite many mismatches which a
thorough linguistic investigation would easily point out). In the process of fixing
the head rules so they represent English better, we devised the type-based approach
used for conversion and testing which we are discussing in this paper. In the fol-
lowing sections we will describe the SUPA dependency format, summarize some
statistics about unique local subtrees in PTB, and present a tool that supports a
type-based approach for marking headedness.

2 SUPA Dependency Format

In this section we summarize the choices we have made for interoperability in
the SUPA project. However, the reader should keep in mind that we intend to be
flexible about treebank revisions allowing multiple approaches even within SUPA.
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2.1 Functional and Lexical Heads

In linguistic theory, function words and lexical words work together to head phrases
[1, 2]. However, dependency tree formats do not typically allow for co-headed
phrases. Therefore, it is necessary to choose the lexical head, the functional head,
or make a single token out of a combination of lexical items, which contain both
lexical and functional heads, such as a verb complex like has been writing. We
follow Stanford Dependency Parser [6] in the belief that functional and lexical
headed dependencies are both valid and that there should be multiple views of co-
headed constructions.

In the experiment described in this paper, we have chosen a more limited ap-
proach and have made specific decisions about functional and lexical categories
in English: in general the lexical categories are heads, however, auxiliary verbs,
when present, are taken as heads; prepositions are taken as heads; the other func-
tional categories are not taken as heads. Hence complementizers are not heads;
and similarly determiners are not taken as heads for this experiment. The object
of this paper is not to defend this particular choice, and in principle nothing in this
paper hinges on this choice of heads. There are many flat structures in PTB where
headedness is unclear, as we will describe below. In such cases, we have selected
one of the possible options for the purpose of conversion to SUPA dependency.

2.2 Coordinate Structures

As described by [15], there are several ways to represent coordinate structures in
dependency trees. For the experiment described in this paper we have chosen the
first conjunct as head. The conjunction word is a dependent of the first conjunct,
and the second conjunct is dependent on the conjunction. In our SUPA version
of PTB, we pre-process coordinate structures so that [XP A & B] is reanalyzed as
[XP A [CONJPP & B]]. In case of multiple conjunctions, such as [A & B & C] the
coordinated construction is reanalyzed as [XP A [CONJPP & [YP B [CONJPP &
C]]]]. Figure 1 shows an example of a coordinate structure for an NP from PTB.

(NP
(NP (DT the) (NNP National)

(NNP Cancer) (NNP Institute))
(CC and)
(NP

(NP (DT the) (JJ medical) (NNS schools))
(PP (IN of)

(NP
(NP (NNP Harvard) (NNP University))
(CC and)
(NP (NNP Boston) (NNP University))))))

Figure 1: Constituency Tree for a coordinated NP from the Penn English Treebank
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Figure 2 shows our dependency representation of the above coordinate struc-
ture in the CONLL format which is the result of conversion from the output of
preprocessing the original coordinate structure to have the above-mentioned reanal-
ysis. Please note that "???" in column 8 in figure 2 as well as in all the following
figures representing SUPA will eventually be replaced by the dependency labels,
which are not the topic of this paper. Currently everything other than Subj, Obj-
DO, Obj-IO and ROOT is expressed using "???". The symbol "-" in columns 3, 4,
6, 9 and 10 is used to fill the slots for information that we were not concerned with
for this part of the project, however, to keep the CoNLL format, we maintained the
slots using "-" as a filler. These can be replaced with corresponding information
when needed.

1 the _ _ DT _ 4 ??? _ _ Institute
2 National _ _ NNP _ 4 ??? _ _ Institute
3 Cancer _ _ NNP _ 4 ??? _ _ Institute
4 Institute _ _ NNP _ 0 ROOT _ _ ROOT
5 and _ _ CC _ 4 ??? _ _ Institute
6 the _ _ DT _ 8 ??? _ _ schools
7 medical _ _ JJ _ 8 ??? _ _ schools
8 schools _ _ NNS _ 5 ??? _ _ and
9 of _ _ IN _ 8 ??? _ _ schools
10 Harvard _ _ NNP _ 11 ??? _ _ University
11 University _ _ NNP _ 9 ??? _ _ of
12 and _ _ CC _ 11 ??? _ _ University
13 Boston _ _ NNP _ 14 ??? _ _ University
14 University _ _ NNP _ 12 ??? _ _ and

Figure 2: Dependency representation for the coordinated NP above in CONLL
format

2.3 Long Distance Dependencies

In our dependency trees, words that are displaced by long distance dependencies
and are presented as antecedents of traces or other empty categories in the PTB are
represented in their “deep structure” positions.

See figure 3 for an example of tree involving a long distance dependency and
figure 4 for its corresponding dependency representation in the CONLL format.

3 Type-Based Conversion of PTB

3.1 Extraction of Unique Local Subtrees

In this section we describe the process for type based treebank conversion. From
the training section of the PTB, we extracted all the unique subtrees of depth two
(i.e. the parent and child nodes). These were grouped according to the parent node
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(SBAR-NOM-PRD (SBAR-NOM-PRD
(ADVP (RB just)) (ADVP (RB just))
(WHNP-2 (WP what))
(S (S

(NP-SBJ (PRP we)) (NP-SBJ (PRP we))
(VP (VBP are) (VP (VBP are)

(VP (VBG stumbling) (VP (VBG stumbling)
(PP-CLR (IN over) (PP-CLR (IN over)

(NP (-NONE- *T*-2))))))) (NP (WHNP
(WP what))))))))

Figure 3: Original constituency tree involving a long distance dependency from the
Penn English Treebank (left), tree after pre-processing steps (right)

1 just _ _ RB _ 4 ??? _ _ are
2 what _ _ WP _ 6 ??? _ _ over
3 we _ _ PRP _ 4 SUBJ _ _ are
4 are _ _ VBP _ 0 ROOT _ _ ROOT
5 stumbling _ _ VBG _ 4 ??? _ _ are
6 over _ _ IN _ 5 ??? _ _ stumbling

Figure 4: Dependency representation for the constituency tree involving a long
distance dependency above in CONLL format

(e.g. NP, VP, PP). (We excluded preterminal-terminal subtrees.) We used each of
these groupings as the test suite for that node. We call the members of the test
suite “patterns”. We created these test suites to be able to test our head rules, as
well as dependency relations against these test suites. There are 26 distinct test
suites. For each pattern, we chose one full subtree from the corpus (including all
terminals) to represent it: these are subtrees whose root node is expanded using the
pattern. Figure 5 shows five full subtrees from the ADJP test suite. For example,
the first tree in figure 5 below represents the pattern type: (ADJP JJ), the second
tree represents the pattern: (ADJP RB JJ), and so on. Note that if the type based
approach is justified, any example would be representative of the type. We provide
a confirmation of this claim in section 5.

The examples were entered in our test suite in their full form as well as in
their simplified form. For creating the simplified forms, we came up with a set of
heuristics to prune adjuncts and other unnecessary nodes, while preserving enough
of the tree so that it is interpretable and grammatical. For example, but to sell at a
week price, even if it means losing some steel-related tax-loss carryforwards was
simplified into but to sell.

As is expected, the test suites varied considerably in the number of types of
patterns they contained, from just 5 types for the WHPP test suite to 6498 types for
the NP test suite. The types in these test suites were organized according to their
token frequencies, beginning with the type with the highest token count to types
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with the lower token counts.

(ADJP-PRD (JJ curly))

(ADJP-PRD (RB unusually) (JJ resilient))

(ADJP-PRD (JJ aware)
(PP (IN of)

(NP
(NP (DT any) (NN research))
(PP (IN on)

(NP
(NP (NNS smokers))
(PP (IN of)

(NP (DT the) (NNP Kent) (NNS cigarettes))))))))

(ADJP (CD 83.4) (NN %))

(ADJP
(QP ($ $) (CD 2.29) (CD billion))
(-NONE- *U*))

Figure 5: A part of the ADJP test suite extracted from Penn English Treebank

3.2 The Type-Based Annotation Tool

Since one of our goals was to create a gold standard for head selection for these
test suites, we designed a tool that makes it convenient to create such a gold stan-
dard. For the gold standard, we decided to cover as many types so as to reach a
minimum of 90% of token coverage in each of the test suites. There are 2 parts
to the tool: (i) The summary page provides the information regarding the number
and percentage of the types as well as tokens covered as we annotate the data for
the correct headedness for each pattern type. It also provides other statistics that
we found to be useful for our purposes. Figure 6 below presents a snapshot of a
part of the summary page from the tool. (ii) The test suite pages provide a way
to look at the pattern type, its token frequency, the original constituency tree, the
constituency tree after pre-processing of coordinate structures and long distance
dependencies, the simplified constituency tree, and the current dependency repre-
sentations corresponding to the original constituency tree as well as the simplified
constituency tree. The test suite pages provide a way for the annotators to select the
correct head and state whether the dependency representation correctly identified
the head or not, etc. Figure 7 presents a snapshot of a part of the test suite VP.

3.3 The Gold Standard

We used the annotation tool to create a gold standard for head selection. In the test
suite for each parent node (NP, S, SBAR, etc), we started with the most frequent
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Figure 6: Summary of the NP test suite head annotation information from the tool

Figure 7: A part of the VP test suite from the tool

subtree types and kept going until we had annotated enough types to cover 90% of
the tokens of subtrees headed by that parent node. We calculated inter annotator
agreement for 215 randomly selected pattern types from the pool of all the pattern
types (all patterns from all the test suites put together) which roughly represented
the distribution of the test suite categories (e.g. NP, VP, S etc) in the PTB training
set. We report a very high agreement with Cohen’s Kappa = 0.86. The confusion
matrix is shown in Figure 8 below. We are happy to share our gold standard.
However, we expect to change it frequently using the annotation tool in order to
experiment with different approaches to headedness and their effect on applications
in parsing and machine translation.

Figure 8: Inter annotator agreement and the confusion matrix for head annotations
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In producing the gold standard, we found certain systematic and certain unre-
lated errors in the PTB in terms of use of tags etc. We have decided to not correct
these errors and provide an annotation taking the input as it is in the PTB for this
version of gold standard. However, in the future, we would like to have another
version of the gold standard that would represent the corrected PTB. Besides these
errors, we also came up with certain hard cases. They were hard in the sense
that when we applied the diagnostics (such as X-bar theory of headedness that the
head projects to the higher level, distributivity) to determine headedness, different
diagnostics gave different or opposite results. Hence we had to make a decision
regarding the analysis of a construction and the preference for a certain diagnostic
for that construction. Below are some examples.

Ambiguity in Coordination constructions: Many coordination constructions
were ambiguous as PTB did not provide an internal analysis of coordination, in-
stead the flat structure was provided. In such cases, as mentioned above as well,
we had to enforce a structure so as to be able to convert to dependency (note de-
pendency requires a head for each phrase to express relationships between it and
other constituents in the phrase). For example, [construction and property man-
agement] could be interpreted as [[construction and property] management] or as
[construction and [property management]]. In absence of the structure in PTB and
any other strong evidence against the following, we defaulted to [[construction and
property] management] where the coordinated phrase is assumed to modify man-
agement or it is assumed to form a compound noun with it; and the management is
taken as the head of the whole phrase.

Difficulty in applying headedness diagnostics in QPs: As mentioned above,
there were certain cases where it was hard to apply the headedness diagnostics we
employed in general to determine the head in an ambiguous situation. For example,
the QP test suite consisted of QPs containing JJS, IN, RB, CD etc. If we look at
these phrases, we find that structurally they look like ADJPs (e.g. fewer than 100
[QP JJR IN CD]) or PPs (e.g. about 160 [QP IN CD]) or AdvPs (e.g. almost half
[QP RB DT]). However distributionally they appear in the same position as CDs.
For example, note fewer than 100 in the following phrase appears in the slot where
a CD normally appears: the fewer than 100 smart students. Thus we found a
conflict in headedness properties here. For QPs, we decided to go ahead with the
distributional criterion and hence select the CD as the head.

Difficulty in determining a head due to the test suite being a non homoge-
nous group of constructions: Besides the QPs, we found some other test suites,
e.g., FRAG and X also to be quite problematic. The reason for this was that these
categories seemed to have many non homogenous constructions. Hence it was hard
to have a consistent analysis for the patterns in these categories. These categories
have caused problems for parsing due to their non homogenous nature. They do
not have a consistent analysis. For example, lists sometimes get treated as appos-
itives or nested noun phrases etc. There are attempts in the literature at getting a
better analysis for such cases, see [8].

Difficulty in selecting a head in a Multi-Word Expression: Also it was hard
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to determine the head in multi-word expressions (MWEs). For example, for ADVP
at least [ADVP IN JJS], should IN be the head or JJS? The head diagnostics do not
help in choosing one over the other. Here are a few more such cases: [CONJP RB
RB IN], e.g. as well as; [CONJP RB RB], e.g. not only; [CONJP CC RB], e.g.
but also. Hence we see that for MWEs, it was hard to determine the head as all
the parts seemed to contribute equally. In such cases, we either decided to pick the
rightmost or the leftmost element depending on the category of the phrase.

4 Statistics about Types in PTB

In order for the type based approach to treebank revision to be useful it must be
the case that few types account for a large proportion of tokens. Figure 9 is a type-
token curve that shows that this is the case for noun phrases in PTB. However,
some categories in PTB are less uniform. Figure 10 shows the type-token curve for
the category FRAG, which contains a variety of unrelated constructions.
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Figure 9: The token-type coverage in the NP test suite; the x-axis is the percentage
of types, while the y-axis is the percentage of tokens
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Figure 10: The token-type coverage in the FRAG test suite; the x-axis is the per-
centage of types, while the y-axis is the percentage of tokens

It is also important to verify how many complete trees consist only of the most
frequent types of subtrees. Or to put it another way, how many trees contain at
least one infrequent type of local subtree. Figure 11 shows that around 62% of
trees consist only of subtrees that are in the top 20% of most frequent local subtree
types. As a sanity check for the type-based approach (where we ordered types
according to their frequency), we also examined the coverage of complete trees if
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the types covered are randomly selected rather than based on their frequency. We
found that to be able to cover 60% of the complete trees, we had to cover more
than 90% of the randomly selected types. This suggests that ordering types by
frequency has an advantage while revising the treebanks.
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Figure 11: The token-type coverage in completely annotated trees; the x-axis
shows the percentage of top trees annotated, and the y-axis shows the correspond-
ing percentage of complete trees covered

5 Confirmation of the Type-Based Approach

We intend to use our gold standard for rapid development, testing, and revision of
head rules. For this paper, however, we report on a much simpler experiment. We
used the gold standard as a lookup table for a head selection task. The input to the
task is PTB. For each tree, we look up each of its local subtrees in the gold standard
and select the head daughter indicated in gold standard. The output is a PTB tree
with the label -HEAD added to each head daughter. For example, (NP (DET the)
(NN book)) is transformed into (NP (DET the) (NN-HEAD book)).

We conducted this experiment as a sanity check on whether one token is a good
representative of a whole type. If there are many examples in the gold standard
where the example we chose is not representative of all the tokens of that type, the
gold standard will produce many wrong results when used as a lookup table.

Recall that our gold standard covers enough types for 90% token coverage at
the local subtree level, but the number of complete trees consisting only of gold
standard types is considerably less. We conducted our sanity check on the subset
of trees that were completely covered by the gold standard. We randomly selected
200 sentences from that subset and used the gold standard as a table lookup for
head selection as described above. We hand-checked each -HEAD label and found
them all to be correct. As a follow up to the reviewers’ comments about creating
a gold standard beforehand instead of hand checking the head selection later on,
we conducted another experiment. For this, we selected 200 random trees without
any condition (i.e. without the condition that all local subtrees in the selected tree
are covered by the head table) and from previously unseen data, the development
set of PTB. We created a gold standard by manually marking "-HEAD" on each
head of each local subtree. We then checked how many of these local subtrees
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were covered by the head table. Also we checked how many of the covered local
subtrees were marked accurately by head selection using the head table. We found
that our head table was able to cover 83% of the local subtrees from this unseen
data (note the head table was created using the types found in the training set of
the PTB). With respect to accuracy, we did not find any cases where the head
table selected an incorrect head, unless the head table entries themselves were not
correct. We did find a couple of head table entries which were not consistent with
our general approach of head selection, e.g. whether ’s should be the head or the
possessor nominal. We fixed those in the head table.

6 Conclusion and comparison with other approaches

We have produced a tool for annotation of head selection in local subtrees and
have applied it to PTB training set to produce a gold standard consisting of a set
of unique local subtree types and the correct head daughter for each type. We have
conducted sanity check experiments to verify that one example of each type is
adequate for developing head marking rules, and that annotating higher frequency
types only does cover a large portion of PTB data.

However, our task was not painless. As mentioned above, we did not correct
errors in PTB and therefore had to deal with many errors in part of speech tags
and many constituent structures that we did not agree with. Categories like FRAG
are very diverse and there is probably no correct generalization about headedness.
Furthermore, many headedness decisions are not straightforward as we discussed
in section on Gold Standard above.

Conversion from phrase structure to dependency format [14, 9] is frequently
facilitated by head rules [7, 3, 5]. Head rules are a brilliant invention but their
use in phrase structure to dependency conversion is a fix to an artificial situation:
some phrase structure treebanks do not strictly follow X-bar theory (or other phrase
structure theory of headedness) and they had to be converted to dependency struc-
ture, which does not allow for unheaded (exocentric) constructions. In this strange
circumstance, head rules must be designed to assign reasonable heads to phrases
where the original treebankers may not have even intended the phrase to be headed.
Some head rules are accurate, others are heuristic, and sometimes they use a default
for unanticipated situations.

In a Magerman/Hwa-style head rule system [5], there is one head rule for each
type of parent node in the phrase structure treebank. The rule shown in figure 12
is for the category NP. The head rule specifies a partial ordering of all possible
daughter nodes. The partial orderings in the rule below are (NX PRP), (NNS NN
NNP NNPS), and so on. “r” and “l” indicate rightmost or leftmost. The “r” in (r
NNS NN NNP NNPS) indicates that the rightmost noun-like item is taken to be
the head, which is generally the case for compounds in English (e.g., lung cancer
cure). The notation “(r)” at the end of the rule indicates that if none of the previous
categories match, the default is the rightmost daughter of NP. (l NP) is for cases
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where a PP is adjoined to the right of an NP.

NP (r NX PRP) (r NNS NN NNP NNPS) (l NP) (r CD FW SBAR RBS) (r)

Figure 12: An example of a Hwa style headrule

This type of head rule assumes that all of the potential daughters can be par-
tially ordered in their likelihood to be the head. The head rules are problematic
when the ordering depends on specific lexical items, a condition that is exacer-
bated by non-optimal part of speech labels in PTB. In PTB, such and enough are
both JJ, and such tiny and tiny enough are both instances of (ADJP JJ JJ). Head
rules can get only one of them right. Our table-lookup method for head selection
does not capture generalizations about word order and direction of headedness, but
it captures the specific context around the head. Next we plan to combine both
approaches to head selection. Thus, first, the algorithm looks for the pattern type
in the head table for head selection. However in the absence of the type in the head
table, it falls back on the head rules to determine what the head should be in a local
subtree. This way we derive benefits of both the approaches: the head table allows
capturing the specific surrounding context, and in cases where it is not useful (due
to a missing pattern in the head table as is expected since we might not want to
spend resources on covering each pattern type, e.g. the singleton cases) the gener-
alization feature of the head rules can come handy. Our future experiments include
looking for improvements in parsing with improved head rules and experiments on
how dependency label sets (universal vs language specific) affect monolingual and
cross-lingual parser training.
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1 Introduction

Given the increasing complexity and expertise involved in the development 
of  language  resources,  there  have  been  a  growing  interest  in  finding 
mechanisms so that the designing and the development of language resources 
may  be  taken  as  a  first  class  citizen  in  terms  of  scientific  work,  and 
accordingly cvs and careers of individual researchers can be fairly credited 
and rewarded for that. Ongoing initiatives such as the international standard 
language  resource  number  (Choukri,  2013),  or  the  studies  on  metrics  to 
ascertain the reliability of linguistically interpreted data sets (e.g. Artstein and 
Poesio, 2008) are just a few illustrative examples of this trend.

Concomitant to this movement of reinforced scientific credibility, but in 
an opposite direction, there have been appearing worrying signs that, in what 
concerns mature and well established scientific fields, scientific activities and 
results  may be untrustable  to an extent  larger  than possibly expected and 
acceptable. That this issue has recently hit the mass media1 is but an indicator 
of the volume and relevance of these signs, whose assessment and discussion 
became unavoidable across all sectors of the international scientific system.

These signs have been related, for instance, to the realization that for a  
considerable  proportion  of  published  results  their  replication  is  not  being 
obtained by independent researchers (e.g. Florian et al., 2011; Belgley and 
Ellis,  2012);  to  the  deliberately  falsified  submissions  of  papers  for 
publication,  with  fabricated  errors  and  fake  authors,  which  get  easily 
accepted even in respectable journals (Bohannon, 2013); or to the outcome of 
inquiries to scientists on questionable practices, with scores higher than one 

1 Unreliable Research: Trouble at the Lab, The Economist, October 19th, 2013.Hiltzik, Michael, 2013, Science has Lost its Way, at a big Cost to Humanity, Los Angeles  
Times, October 17, 2013.Zimmer, Carl, 2012, A Sharp Rise in Retractions Prompts Calls for Reform, The New York  
Times, April 16, 2012Begley, Sharon, 2012, In Cancer Science, Many "Discoveries" don't Hold up, Reuters, March 28th, 2012.Nail, Gautam, 2011, Scientists' Elusive Goal: Reproducing Study Results, The Wall Street  
Journal, December 2, 2011.
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might expect or would be ready to accept (Fanelli, 2009). For a receent and 
updated overview and further references on these signs, see (Stodden, 2013).

A number of causes have been aired for these state of affairs including, 
among  others,  increasingly  sloppy reviewing;  the  growing  number  of  so-
called  “minimal-threshold”  journals;  policies  for  publication  that  do  not 
require the sharing of at least the raw or primary data; or the non disclosure 
of the software developed and used to obtain the results  published. These 
causes have deserved serious scrutiny, including in the “World Conference 
on Research Integrity”, whose third edition was held this year.2

Underneath  these  immediate  causes,  a  number  of  factors  have  been 
pointed out, including, for instance, not enough negative incentives or peer-
pressure to hamper the above practices; career and promotion pressure too 
biased for quantity; widespread disinterest on negative results as an intrinsic  
part  of  the  scientific  progress;  widespread  disfavoring  of  activities  of 
replication by funding agencies; poor or non existent retraction procedures 
for results that are eventually noticed to be wrong or flawed after having been 
published;  ideological  pressure  to  get  immediate  financial  return  from 
research results; etc.

In  Bill  Frezza’s  bold  opinion,  the  financial  pressure  on  the  scientific 
system “has created a moral hazard to scientific integrity no less threatening  
than  the  moral  hazard  to  financial  integrity  that  recently  destroyed  our 
banking system.” (Frezza, 2011).

In  the  present  invited  talk  at  the  12th Workshop  on  Treebanks  and 
Linguistic Theory, I am interested in contributing to initiate a debate on what 
part of the above issues may be recognized as having the conditions to be 
eventually happening also in our field, what part does not apply to it given its  
specific nature, and what may be the risks that may be specific to it. The 
ultimate  goal  of  this exercise is to contribute for the reinforcement of the 
scientific  credibility  of  language  resources,  and  to  the  integrity  of  our 
scientific work around them.

Before proceeding,  a word of clarification is  in order,  in particular  to 
indicate what this talk is not about. It is not about what one might term as  
issues of empirical adequacy of linguistically interpreted data sets. These are 
issues related to the adequate interpretation of the markables. For instance, 
issues that  occur if in the annotation of a corpus,  as a result  of  a flawed 
design, the annotation principles or guidelines would wrongly require that 
what  are  standard  grammatical  prepositions  be  mistakenly  annotated  as 
adjectives,  etc.  These  are  the  issues  addressed,  for  instance,  in  (Zaenen, 
2006).

It is not about issues of reliability of annotated data sets either. These are  
issues  that  are  related  to  the  adequate  definition  of  the  annotation 
methodology  in  view  of  minimizing  errors  in  the  application  of  the 
annotation guidelines, and that can be monitored by metrics involving inter-

2 http://www.wcri2013.org
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annotator  agreement,  etc.  These  are  the  issues  addressed,  for  instance,  in 
(Artstein and Paoesion, 2008).

This  talk  is  about  integrity  issues  that  are  associated  to  the  overall 
scientific ecosystem where the development of language resources and the 
research  around  it  takes  place.  These  are  issues  related  to  the  overall  
conditions that support the credibility of and trust on the scientific work and 
its results, and that remain to be addressed even if the issues on empirical  
adequacy and reliability of the data sets are eventually settled.

2 Essential replication

Let  us  take  two  key processes  contributing  for  the  integrity  of  scientific 
activity and results, reviewing and replication, the former applying before (or 
leading to) the publication of results, and the latter applying after these have 
been published. The point worth noting at this juncture is that the need for 
replication  does  not  result  from the  fact  the  ideal  of  flawless  reviewing 
cannot be attained. Replication is a first class citizen here and it is still needed 
to  play  a  crucial  role  even  in  case  flawless  reviewing  could  have  been 
ensured.

For  the  sake  of  concreteness,  let  us  consider  the  example  of  natural  
sciences.  And  to  keep  the  reflection  at  a  general  enough  level,  let  us 
understand that to a large extent, advancements and discoveries reported in 
papers are obtained as a result of new ways on how to gather primary data 
and/or how to analyze them into secondary data and empirically supported 
generalizations. If an ideal flawless review process could be possible, for a 
top-scoring paper accepted for publication, in essence the reviewers would 
then have said ok to what? In essence, to what one would call, for lack of a  
better and more encompassing term, the “methodological” aspects reported in 
the paper.

For  the  sake  of  the  point,  let  us  leave  intentional  misconduct  or 
fabrication of data aside. In spite of the existence of a correct methodology to 
collect the primary data, their actual gathering may have gone wrong as a 
consequence  of  some  clerical  error  or  some  inadvertent  practical  slips. 
Likewise, the analysis into secondary data and generalizations may have not 
been appropriately executed also due to some fortuitous reasons. The point 
here is that, in general, for rich and complex enough data, reviewers have no 
means  to  detect  this  kind  of  problems,  unless  they  would  also  run  the 
experiments  themselves  and executed the analysis  of  the data.  But  that  is 
what replication is all about, and for obvious practical reasons, it is not and 
cannot be under the scope of the reviewing process.
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3 Emerging validation

How can these considerations be transposed to or help to think about the field 
of language resources, where the ultimate goal is the development of primary 
data (to be used at subsequent technological and scientific activities)? At a 
general enough level of appreciation, we should then start with the note that a 
typical research paper in our area focus in the first of the two parts indicated 
above. Though it tends to be seen as a positive feature that papers may report 
also  on  technological  solutions  or  tools  supported  by the  data  set  whose 
development is being reported, the key topic is clearly which methodological  
novelties are involved (e.g.  a new bootstrapping approach,  new languages 
involved, new relations between previously available data, etc.) and which 
data set, i.e. primary data, that these innovations have eventually led to.

Let  us  transpose  the  question  above  to  our  area:  If  an  ideal  flawless 
review process was possible, for a top-scoring paper accepted for publication, 
in essence the reviewers would then have said ok to what? Again, in essence, 
to the methodological aspects reported in the paper. And again, in spite of the 
existence of a correct methodology to collect the primary data, their actual  
gathering  may have  inadvertently gone wrong for  a  number  of  fortuitous 
reasons. And that is where and why "replication" has its key role to play.

And here we arrive at an important point of our discussion: what exactly 
can  be,  or  should  be  understood as  replication,  or  as  playing  the  role  of 
replication, in this research area of language resources?

Replication  permits  to  go  beyond  the  mere  verification  of  the 
methodological  issues  by  reviewers,  as  these  are  reported  in  successfully 
published papers. It permits to check if the execution of those methodological 
steps, procedures, calculations, processes, etc. actually lead to the results that  
are being reported. For the area of language resources, in a very narrow and 
strict sense, this might translate into redoing the data set whose development  
is reported in a given paper, which clearly is completely out of question for  
obvious practical reasons. In a less narrow and more sensible sense, this may 
translate into checking,  even if  only by an as smart  sampling as possible,  
whether the data set that resulted is actually the one being announced in the 
paper.

As replication is different of and out of the scope of reviewing in natural 
sciences, also here in our area whatever the details of this validation process 
may be, it is not an assignment for reviewers. For one, because for a large 
number of papers on languages resources, the data sets whose development is 
being reported are not publicly made available by their authors. But even if  
they were, and in the growing number of those resources that are actually 
made available at the moment of the publication of the respective papers, it is 
obvious  that  reviewers  have  no practical  conditions  to  proceed with such 
validation,  which  in  the  case  of  language  resources  may  play  the  role 
analogous to the one replication plays in other areas.
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As replication of  experiments  is  a key element  in the integrity of  the 
scientific  ecosystem  of  other  sciences,  validation  of  language  resources 
cannot but be a key element for the integrity of scientific activities in our 
area.

4 Illusory impactfulness

It may be tempting to consider that in the case of language resources, their 
validation is eventually taken care of not at a specific moment or in some 
dedicated occasion or explicit procedure, but that this just happens implicitly 
by the “invisible hand” of the different impact of the different resources in 
the community of researchers and users. A given resource has a larger impact  
if it is used more frequently and referred to more often in a larger number of 
papers. But the level of impact of a resource illusoriously correlates with the 
possible level at which such resource had been validated, even if supposedly 
by the mere effect of the usage that the community is doing of it.

For  languages  for  which  there  is  a  small  community  of  researchers 
working on it, and little or no funding exists to do so, a resource referred to 
only a very few times may be a perfectly developed data set, in accordance to 
the respective methodological principles and guidelines, that may happen to 
be  fully  adequate  in  linguistic  terms.  The  same  holds  for  resources  that 
support work on less researched topics, which comparatively may receive a 
very small number of references and yet be an extraordinarily well-developed 
resource, which would top score in any rigorous validation process.

In  the  opposite  direction,  it  occurs  also  that  a  resource  may  have  a 
widespread  usage  and  receive  a  high  number  of  references  and  yet  its 
validation  would  indicate  suboptimal  scores  (Van  Halteren,  2000;  Eskin, 
2000; Dickinson and Meurers, 2003; Tylman and Simov, 2004; Dickinson 
and Meurers, 2005). It is enough, for instance, that it is the first of its kind for 
English and/or supports research in a very hot topic.

Current  mainstream research  on  natural  language  processing  is  about 
getting increasingly better evaluation scores for the relevant type of tools or 
applications  while  working  with  some  given  data  sets  (to  ensure 
comparability), which ipso facto become the de facto standard data sets. And 
this can be pursued, and is actually pursued, whether or not those data sets  
had  been  correctly  developed  or  had  been  gone  through  any  validation 
process.

As Annie Zaenen put it in a humorous way when discussing the specific 
case of the development of language resources annotated for coreference: "Of 
course,  as  long  as  the  task  is  to  provide  material  to  develop  and  refine 
machine-learning techniques,  much of this doesn’t  matter.  Whether  Henry 
Higgins and  Eliza Doolittle are referring to the same entity or not is of no 
interest in that context. The technique has only to show that if it is told that  
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they  are  coreferent  because  they  had  the  same  job  (even  at  different  
moments),  then  it  can  also  learn  that  George  Bush  and  his  father  are  
coreferent." (Zaenen, 2006, p.579).

5 Putting on the agenda

For other long-established scientific areas, the discussion on replication of 
experiments and other integrity aspects of the scientific work has definitely 
made  its  way  into  the  public  agenda  on  science.  And  the  discussion  on 
mechanisms,  conditions and incentives to foster,  support,  fund or perform 
replication  has  arrived  to  stay.3 By the  same  token,  we  should  bring  the 
discussion on the validation of resources to the agenda of our community,  
and  add  it  to  other  possible  forward-looking  issues  currently  aimed  at  
strengthening the conditions of our research work.
When  considering  the  actual  enormous  amount  of  effort,  time  and 
perseverance that is necessary to put in place a large enough data set that may 
be annotated with some  quite  sophisticated linguistic  interpretation,  under 
some stringent reliability ensuring methodology,  one has to admit  that the 
effort and conditions needed to publish a paper reporting on its development 
or fill in its metadata record, and get credited for it, is incomparably much  
ligther.  Validation  is  a  crucial  element  to  help  preventing  and  diverting 
possibly unduly inflated or even void reporting.
The  organizations,  initiatives  or  platforms  operating  the  distribution  of 
language  resources,  such  as  ELDA,  LDC,  OLAC,  META-SHARE  or 
CLARIN among others, have been driving forces of a continuous endeavor to 
support and foster the research area of language resources. In my view, it is 
only natural that, in order for them to evolve along the natural progression of 
the field and its new demands, the community of researchers expects that the 
mission of these organizations be extended. In particular, we can expect that  
these organizations play a key role in contributing to research integrity by 
being  independent  stakeholders  to  whom the  role  of  validating  language 
resources is trusted.
It  is  certain  that  in  their  regular  daily  operation,  the  language  resources 
distribution  organizations  have  been  proceeding  with  instrumental 
verification of the resources that they receive to be distributed, at least to 
check  whether  the  content  of  the  packages  match  the  description  of  the 

3 The  Reproducibility  Initiative  (www.scienceexchange.com/reproducibility)  was launched in 2012 by several prominent scientific journals and organizations in response to  revelations  from  the pharmaceutical  industry  that  a  large  proportion of  published cancer research cannot be reproduced. It  intends to identify  and reward high quality  reproducible research through independent validation of key experimental results.The  Center  for  Open  Science  (centerforopenscience.org)  is  a  non-profit  organization founded in January 2013 to increase openness, integrity, and reproducibility of scientific  research.
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resource provided in its metadata record.4 But given the discussion above, the 
point is that this may need to be re-addressed under an entirely new light, and 
under  renewed  conditions.  More  than  being  just  an  internal  procedure, 
validation of language resources plays a unique role in the whole ecosystem 
where  the  research  work  on  and  around  language  may  strive,  raises  its 
profile,  and  hope  to  keep  progressing  according  to  the  highest  scientific 
standards.
How  the  distribution  organizations  may  fulfill  this  role,  assume  this 
responsibility and make a key contribution for the progress of the area is a 
much-needed debate, which should welcome different views from different 
actors, and which the present paper would like to trigger. I would though dare 
to venture that at least a couple of ingredients will be crucial: the validation 
of language resources should be systematic and public.
For  different  types  of  datasets,  practically  feasible  and  de  facto standard 
procedures should emerge on how to proceed with their validation.
And, as a way of a badge of validity, the metadata record of each resource 
should publicly indicate which kind of validation procedure it was submitted 
to, and what were the scores obtained for the different validation parameters 
if applicable.
Clearly, this will bring the language resources distribution organizations from 
the  level  of  being  instrumental  supporters  to  be  key  players  in  the 
sustainability of the whole area, representing and ensuring a much needed 
self-regulatory  endeavor  of  the  scientific  community  they  were  aimed  to 
serve when they were initially set up.
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Abstract
This paper reports on a pilot study on interannotator agreement in discriminant-
based parsebanking, especially with a view to uncovering linguistic issues in
the grammar and lexicon. We classify the annotator discrepancies according
to their causes, pointing to different stategies for avoiding them in the future,
e.g. with regard to documentation or to grammar and lexicon development,
and discuss a selection of examples.

1 Introduction

Many treebanking approaches combine automatic analysis tools, such as taggers
and parsers, with manual editing of syntactic representations. Interannotator agree-
ment in these approaches is usually studied by comparing labeled nodes and edges
in structures produced by different annotators [1].

Parsebanking in a strict sense differs from these approaches in that annotators
are only allowed to choose between automatically computed full parses but not to
create, enhance or otherwise modify any structures manually. This guarantees that
the parsebank is always fully in accordance with the grammar which is used to ana-
lyze the corpus [8]. In a parsebanking context, classical measures of interannotator
agreement comparing labeled nodes and edges are not the best way of analyzing
the annotation process.

The main problems in parsebanking are ambiguity and coverage. Sentences not
covered by the grammar and lexicon are either ungrammatical or require an ex-
tension of the grammar or lexicon. Since the annotation process provides feedback
for such extensions, parsebanking in our approach is also a method for incremental
grammar and lexicon development, as will be discussed below [11, 9].

Ambiguity in a large coverage grammar frequently causes the number of alter-
native analyses to be in the hundreds, so that parse selection needs to be efficient.
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Automatic analysis of the forest of alternatives produces a set of lexical, morpho-
logical and syntactic discriminants dividing up the set of alternatives. Annotators
typically make less than ten discriminant choices to reduce the number of analyses
from several hundred to one.

The automatic computation of discriminants and their selection by human an-
notators have been successfully used in a number of parsebanking projects [3, 7,
14, 13]. Among these, the Alpino treebank allowed manual post-editing, and in-
terannotator agreement was studied on final, edited syntactic representations. In
a parsebanking approach like ours, however, where only unedited parser outputs
are stored, the treebank can be repeatedly reparsed with an updated grammar. The
annotators’ earlier discriminant choices will then be automatically reapplied to the
new sets of analyses, and will frequently be sufficient to single out a unique analysis
again.

The basis for grammar development is continual feedback from the annotators,
as they encounter wrong or missing analyses of the corpus sentences. The only
previous study of interannotator agreement based on discriminant selection which
we know of is related to the Hinoki treebank of Japanese [13]. In that study, a
quantitative and qualitative analysis of interannotator agreement was instrumental
for investigating the effects of a method for speeding up annotation by using part-
of-speech tags.

Our aim has been to carry out a pilot study of interannotator agreement, uti-
lizing our new facilities for displaying annotation discrepancies in the treebank in-
terface, primarily in order to explore the possible role of such studies in detecting
and rectifying shortcomings in the grammar and lexicon, in the documentation,
and in the criteria governing parse selection by the annotators. Given the limited
scope of the study, the quantitative estimation of overall reliability of the annota-
tion is a less prominent aim. The study was carried out on the INESS parsebank for
Norwegian, parsed with XLE (the Xerox Linguistic Environment). The grammar
is NorGram, a hand-written grammar for Norwegian based on the LFG (Lexical-
Functional Grammar) formalism [2, 5]. Our study indicates that an in-depth anal-
ysis of disagreements in discriminant selection may provide a valuable basis for
improving the linguistic analysis underlying the parsebanking method.

2 Studying interannotator disagreement

A parsebanking approach without post-editing guarantees consistency of the parse
results with the grammar, while inconsistencies among the annotators are possible
in the resolution of ambiguity. In the INESS infrastructure, the normal feedback
of annotator comments reflects conscious realizations by the annotators that some-
thing in the grammar or lexicon may need adjustment. But interannotator disagree-
ment also uncovers shortcomings that may have gone unnoticed by the annotators.

An annotator discrepancy is here understood as a difference in the selection of
available parse results for a given sentence. Such differences can be identified by
the discriminant choices involved in finding a unique parse result for the sentence
in question. A discrepancy will arise if there is at least one such difference between
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the analyses selected for that sentence. Discrepancies also occur in cases where one
or more annotators have left open at least one choice made by another annotator.

In traditional treebanks, studying interannotator agreement may require special
algorithms that compare the annotations in the treebank [4, 6]. We were able to use
our own and XLE’s existing algorithms for simultaneous display of all analyses of a
sentence in the form of packed c- and f-structures (constituent structures and func-
tional structures), which were easily modified to display differences in annotator
choices. In the packed representations, common substructures are displayed only
once, and each substructure is labeled (in an abbreviated form) by the set of analy-
ses it is part of. In c-structures, these labels are realized as additional nodes, whose
daughters are each labeled by the analyses they are valid for. In the annotator com-
parison interface, only solutions chosen by the selected annotators are displayed
as packed structures. In contrast to ordinary packed solution display, substructures
that are not common to all (selected) annotators are labeled by the annotators who
chose them.

Figure 1 shows a minimal example of discrepancy. The analyzed sentence is
(1):

(1) Hun
she

gav
gave

gutten
boy.DEF

en
a

dask
slap

i
in
baken.
behind.DEF

‘She slapped the boy on his behind.’

The disagreement in Figure 1 concerns the question of PP attachment: does
the prepositional phrase i baken ‘in behind.DEF’ modify the nominal en dask ‘a
slap’ or the verb gav ‘gave’? In the given example, two annotators (gy and m) have
chosen the former analysis, and two (gu and p) have chosen the latter. In the c-
structure the discrepancy is shown by the two alternative subtrees given for the
string gutten en dask i baken. It can also be seen in the f-structure: the choice of
verbal PP attachment selects the analysis where i baken is assigned the function
of ADJUNCT to the three-place predicate ‘gi<[], [], []>’, whereas the choice of
nominal PP attachment selects the analysis where i baken is an ADJUNCT to the
predicate ‘dask’. For the sake of illustration, the screenshot in Figure 1 displays
only a part of the information that is available in the sentence window. 1

3 Categories of discrepancies

Discrepancies among the annotators have various causes, pointing to different strate-
gies for avoiding them in the future. Based on their cause we may sort the discrep-
ancies into the following categories, among others:

1. Discrepancies arising from failure to grasp the intention behind the grammat-
ical categorizations. The remedy in this case is better documentation and dis-
cussions among the annotators and the grammar developer in order to sharpen
the criteria for making the distinction.

1The structures in Figure 1 are visualized using the LFG Parsebanker [12, 10].
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Figure 1: A screenshot showing a sentence with one differing discriminant choice,
displayed in the c-structure as well as in the f-structure.

2. Discrepancies arising from insufficient basis in the text for making a unique
decision. These cases may be assigned to one of two subcategories:

(a) Genuine ambiguity: the distinction in question is generally well moti-
vated, but in the case at hand there is no basis for deciding exactly what
the author had in mind. In such cases the best solution may be to refrain
from making a choice, ending up with more than one analysis.

(b) Vagueness: there is no clear choice to be made between alternatives
presented by the grammar and the lexicon – it is hard to see how the
distinction can be applied to the case at hand, even from the author’s
point of view. In such cases the question arises whether it is motivated
to keep the distinction in the grammar or lexicon, at least in its current
form.

3. Discrepancies arising from failure of the grammar or lexicon to cover the
construction under consideration, resulting in differing second-best choices
among the annotators. In such cases the grammar or lexicon should probably
be extended.

40



The ‘vagueness’ in 2(b) is a feature of the individual case, not necessarily of
the distinction in general, which may be clear enough in other cases. However, if
the number of vague cases is sufficiently high as compared to the total number of
occurrences, the motivation for the distinction is weakened. Imposing conventions
of default decisions is of limited value, since users of the treebank then cannot trust
the annotation anyway, but will have to inspect the examples themselves. Leaving
an ambiguity unresolved in a high number of instances is also unsatisfactory. Hence
the suggested solution is to remove the distinction from the grammar. This will also
increase the efficiency of the annotation. The linguistic aspects of such grammar
modifications need to be discussed in each individual case.

4 A Pilot Study

A text of 100 consecutive sentences was selected from one of the novels represented
in the treebank: Knirk: scener fra et ekteskap by Inge Bøgel Lassen. The sentences
were disambiguated by four annotators, making discriminant-based choices among
the analyses offered by the grammar.2 The basic figures are shown in Table 1.

Although this is not a quantitative study of interannotator agreement, the num-
ber of annotated sentences being so small, it is worth pointing out that the seemingly
high number of sentences with disagreement in Table 1, i.e., 44, is the number of
cases where there was not complete agreement among all the four annotators. In
order to make the figures more comparable to existing studies, where it is usually
pairwise disagreements that are counted, we may note that the average number of
sentence-level disagreements within each of the six pairs of annotators is 27. Par-
tial disagreements, where at least one annotator has ended up with more than one
analysis, and some but not all of these analyses are shared with the other annotator,
are then also counted as full disagreements. Relating this number to the number of
sentences with more than one analysis from the grammar, i.e., 68, yields an interan-
notator agreement score of 60.3%. If, on the other hand, partial disagreements are
scored relative to the overlap of the sets of chosen analyses, the average number of
sentence-level disagreements within the six annotator pairs is 25.5, which gives an
interannotator agreement score of 62.1%.

Annotated sentences: 100
Sentences given a valid analysis by the grammar: 81
Among these, sentences with more than one analysis: 68
Among these, sentences with disagreement: 44

Table 1: Classification of sentences according to number of analyses and annotator
disagreement.

In the 44 sentences with annotator discrepancies, a total of 61 differing dis-
criminant choices were involved: 31 sentences differed in only one discriminant

2We are indebted to Gunn Inger Lyse, University of Bergen, who joined us in preparing the data
for this investigation.
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choice, 9 sentences in two, and 4 sentences in three. A classification of the differ-
ing discriminant choices is shown in Table 2, referring to the linguistic phenomena
involved in the choices.

Category Freq
det, den, de as expletive pronoun, referring pronoun, article or demon-
strative

15

Different adjunct attachments 12
Different syntactic functions 5
Different lexical categories 5
Lexical, grammatical or selected preposition 4
noe ‘some’ as mass or countable 3
Multi-word expression or compositional phrase 3
Different lemma assignments 3
Different morphological categories 2
Coordination or quasi-coordination 2
Inquit or non-inquit verb 1
Different coordination levels 1
Grammar ambiguities without linguistic motivation 5
Total 61

Table 2: Classification of the 61 differing discriminant choices.

Themost frequent disagreement type in Table 2 concerns the forms det ‘it’/‘that’/
‘the’, den ‘it’/‘that’/‘the’, and de ‘they’/‘those’/‘the’ and is thus probably fairly
language-specific, while the second most frequent type, adjunct attachment, pre-
sumably exemplifies a more universal problem. The first type involves choices
among personal and impersonal constructions and between pronoun and demon-
strative readings, and hence often involves rather delicate judgments. The second
type involves both PP, adverb and adverbial clause attachments. We will consider
some examples and relate them to the types of discrepancies specified in Section 3
in order to determine their relevance for further grammar development.

The last category in Table 2, Grammar ambiguities without linguistic moti-
vation, is of limited interest here since it does not reflect linguistic ambiguities,
but rather ambiguities arising from technical aspects of the formal grammar. Some
cases concern redundancies that should be removed, e.g., the (linguistically) same
analysis being inadvertently covered in two different ways by the grammar. Other
cases concern redundancies which are more difficult to get rid of, e.g. relating to
punctuation, whichmay be allowed in the same position by different rules and there-
fore sometimes may leave the annotators vacuous choices.

4.1 Discrepancies of type 1: the criteria need sharpening

In cases where it is difficult to grasp the intention behind grammatical catego-
rizations because of insufficiently developed criteria of selection, annotators may
choose different analyses for the same sentence. This may be illustrated by cases
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where the challenge for the annotators is to decide whether instances of the third
person singular pronoun det ‘it’ is a referring expression or a non-referential exple-
tive when occurring together with the verb være ‘be’. These may be copula con-
structions, presentative sentences, or various types of impersonal constructions. The
issue can be demonstrated by examples (2) and (3):

(2) Det
it

var
was

noe
some

romantisk
romantic

tøv.
nonsense

‘It was some romantic nonsense.’

(3) Det
it

var
was

helg.
weekend

‘It was the weekend.’

In cases like this, tests may be applied to find the correct analysis: is the word
det anchored to an identifiable discourse referent in the preceding context, and does
it express an argument in a predicate-argument structure? If yes, it is a referring pro-
noun (PRON). If not, it is an expletive pronoun (PRONexpl). The next question is
whether the existential reading of the verb være is suitable in the given context, in
which case it is contextually appropriate to replace detwith the existential expletive
der ‘there’, and være with the synonymous verb finnes ‘exist’. This normally iden-
tifies the presentative construction. If such replacement results in an unidiomatic
sentence, or clearly changes the meaning, then we are faced with an impersonal
construction involving a zero-valued predicate, like English It’s raining, It’s cold.

For examples (2) and (3) these tests have fairly clear answers. Still, some of
them were not applied by one or more annotator, because in these sentences our
experiment showed discrepancies with regard to the choice between PRON and
PRONexpl. In (2) one annotator chose the expletive reading of det, while the other
three selected the referential reading. Inspecting the context reveals that in (2) det
refers to the content of a film that has been talked about. The sentence is a copula
construction, and the referent of det is the entity of which ‘being some romantic
nonsense’ is predicated. Concerning (3), one annotator picked the referential read-
ing of det, and three chose the expletive. As this sentence is the opening of a new
scene in the narrative, there is no plausible referent for det. If det is a non-referential
expression, it is an expletive pronoun, and does not have argument status. Therefore
(3) cannot be a copula sentence. A presentative analysis can also be ruled out, since
the existential reading of være appears odd in this case: the sentenceDer fantes helg
(‘There existed a weekend’) is not idiomatic. The conclusion is that (3) is an im-
personal construction, with only one argument in the predicate-argument structure,
expressed by helg. 3

There are, however, some cases where it may be more difficult to decide on the
correct analysis. In (4) the contextually appropriate reading is a copula construction

3The predicate-argument structures in LFG closely correspond to the verbs of the language, usu-
ally assigning a predicate to every verb, even the copula. In a semantic representation the predicative
complement helg would not be an argument, but rather the predicate itself, with 0 arguments, like
‘rain’ in It’s raining.
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where det is a referring pronoun, and the property of being no problem is predicated
of the referent of det.

(4) –
–
Det
it

er
is
vel
well

ikke
not

så
so

farlig.
dangerous

‘That’s not really a problem, is it?’

In contrast to sentence (2), it is somewhat less clear in (4) how to identify the
referent of det. The pronoun is not anchored to a specific entity, but to a certain
state of affairs which is implicit in the discussion that is reported in the narrative. If
a discourse referent is not readily identifiable for det in (4), an impersonal reading
may appear plausible, and such a reading was in fact chosen for this sentence by
one of the four annotators.

Further, in sentence (5) the impersonal construction is the contextually appro-
priate reading:

(5) Nå
Now

var
was

det
it

virkelig
really

for
too

mye.
much

‘Now it was really too much.’

In the case of (5), two annotators chose the referential reading of det, and the
other two picked the intended, expletive reading. By considering the textual context
immediately preceding (5), the referential choice becomes understandable. The text
describes a stressful situation, and this very situation can possibly be perceived as
the referent of det. Also, it is not easy to find clear criteria to distinguish between
a case like (4), where det does refer to a described situation or state of affairs, and
the case of (5), where it does not.

In order to amend annotator discrepancies of the kind illustrated here, it seems
necessary to sharpen the criteria for distinguishing between the different construc-
tions. Another test could be introduced to help in identifying impersonal construc-
tions. This applies to cases where the existential reading can be ruled out, and where
it is difficult to decide whether or not det refers to an entity or some state of affairs
in the preceding discourse. In such instances another test could be to try to replace
detwith a demonstrative. If that changes the meaning, or yields a contextually inap-
propriate sentence, it indicates that det is non-referential, supporting the impersonal
reading. For example, in (5) this could be tested by pronouncing det with emphatic
stress, which brings about the demonstrative reading of det ‘that’. Given the con-
text, this appears odd. This strengthens the position that there is no referent of det
in the preceding discourse, and indicates that (5) is an impersonal construction.

In the present study we need not go more deeply into the various types of Nor-
wegian det er constructions. The relevant aspect here is that sharpened criteria may
improve annotators’ intuitions, and hence reduce discrepancies in further practice.

4.2 Discrepancies of type 2(a): the choice should be left open

Example (6) illustrates the type of disagreement where the choice should be left
open.
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(6) Hun
she

følte
felt

ikke
not

noe.
anything

‘She didn’t feel anything.’/‘She felt nothing.’

In (6) the annotators were given the choice between two alternative attachments
for the negative adjunct ikke, which can be taken to modify either the verb følte or
the quantifier noe. Two annotators opted for modification of the verb følte, while
the other two chose modification of the quantifier noe. If ikke is analyzed as mod-
ifying the quantifier, the word noe would be stressed. If ikke on the other hand is
analyzed as modifying the verb, then noe would most likely be unstressed. There
is a perceptible (but slight) semantic difference between the alternatives, but both
alternatives seem possible in this context. Without access to prosody the intended
analysis is hard to determine. The conclusion is to include in our criteria that in
such cases the choice should be left open and the result marked as ‘gold’, which
means that both remaining analyses will be treated as valid.

4.3 Discrepancies of type 2(b): the grammar should remove or modify
the distinction

In example (7) a distinction is revealed that could be removed from the grammar.

(7) Hun
she

kjente
knew

ham
him

selvsagt
of course

også
also

uten
without

briller.
glasses

‘She of course also knew him without glasses.’

In (7) the annotators are presented with the choice between two attachments for
the sentence adverb også ‘also’. Three of the four annotators picked the analysis
where også is a daughter of S and hence an adjunct of the verb kjente. The fourth
annotator selected the analysis where også is a daughter of the PP uten briller and
hence an adjunct of the preposition uten.

In this case it is hard to grasp a clear semantic distinction between the alterna-
tives. Under both of them the focussed PP falls within the scope of the adverb. The
reason why the annotators are presented with this second option, where the adverb
is allowed as a daughter of PP, is that constituents like også uten brillermay appear
in sentence initial position, where there is no alternative but to analyze også as a
daughter of the PP, and hence the grammar must allow such PPs. Examples like
this raise the question whether this kind of constituent should be limited to certain
positions, such as sentence initial position and right dislocation. A limitation of this
kind can then be introduced tentatively, pending further corpus experience.

4.4 Discrepancies of type 3: The grammar needs extending

An example revealing the need to extend grammar coverage is sentence (8).

(8) –
–
Er
is

det
it

slik
thus

du
you

vil
want

ha
have

det?
it?

‘Is this the way you want it?’
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Again, the annotators were offered the choice between the referential PRON
reading and the expletive, non-referential PRONexpl reading of the first det. The
choice of referential PRON gives the reading ‘Is it (i.e., the thing we’re talking
about) the way you want it?’. One annotator chose this reading. The choice of ex-
pletive PRONexpl gives the reading as an extraposition, as in an English sentence
like Is it good that you want it?, which is almost hard to grasp intuitively when good
is replaced with thus, as it is here; the meaning is the awkward ‘is the fact that you
want it thus?’. Three annotators chose this reading.

However, neither of the readings offered is adequate. The context makes it clear
that there is no referent available motivating the referential PRON reading. Still,
the awkward extraposition reading is not the one we want, either. The reason why
it was still chosen by some annotators was obviously the correct observation that
the subject was expletive, while the adequate expletive construction had not been
found. As indicated by the translation of example 8, this is a cleft sentence: ‘is it
thus you want it?’, i.e., ‘is this the way you want it?’ The grammar did not cover this
kind of cleft sentence, in which an adjective is the focussed element. The annotator
disagreement brought attention to this shortcoming, which could hence be rectified.

Another example is (9):

(9) –
–
Det
it

var
was

ikke
not

noe.
something

‘It was nothing.’

In this case three annotators selected a referential reading of the subject, whereas
one chose the existential reading. A referential reading requires a referent of det in
the context, but there is no clear candidate in the preceding discourse, apart from
possibly the described situation itself. Testing for an existential reading involves re-
placing detwith der and varwith fantes. This gives the sentenceDer fantes ikke noe
‘There was nothing’, which is perfectly idiomatic, but contextually inappropriate.
The intended reading of (9) is an impersonal construction, where det is an exple-
tive pronoun, and the quantifier noe expresses the only argument in the predicate-
argument structure. In this case this reading was, however, not available among
the analyses delivered by the parser. The grammar had to be extended to cover the
possibility of nominal predicative complements to impersonal være.

5 Conclusions and outlook

Our in-depth qualitative pilot study of interannotator agreement has provided us
with information pertinent to the distinctions underlying the LFG grammar for Nor-
wegian which is being incrementally developed together with the parsebank.

Table 3 shows the result of sorting the discrepancies found in our study accord-
ing to the categories presented in Section 3. In addition to the types 1, 2(a)-(b),
and 3 which we have discussed and illustrated, Table 3 includes two categories of
a rather residual kind. Firstly, there are some instances of discrepancies where the
mistaken choices are obvious performance errors, such as picking the syntactic cat-
egory YEAR, instead of NUMdig for the numerical expression 20.45. These are
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counted as annotator errors in Table 3. Secondly, some discrepancies have arisen
because of vacuous choices as explained in Section 4, or due to technical shortcom-
ings. These instances are listed at the bottom of Table 3 as ‘linguistically vacuous
choices’.

Type 1: the criteria need sharpening 35
Type 2(a): the choice should be left open 3
Type 2(b): the grammar should remove or modify a distinction 8
Type 3: the grammar needs extending 4
Annotator errors 6
Linguistically vacuous choices 5
Total 61

Table 3: Number of differing discriminant choices in each category (Section 3).

The figures in Table 3 suggest that most cases of annotator disagreement are
rooted in insufficient documentation of the criteria for the distinctions made in the
grammar. But they also indicate that interannotator agreement studies are a promis-
ing source of information about grammar and lexicon shortcomings which have
gone unnoticed by the annotators during the annotation process. Therefore repeated
studies of this kind should be included in the work cycle of the project. Future work
will include a more extensive quantitative study on discriminant-based interanno-
tator agreement.
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Abstract

In this paper, we propose using active learning for treebanking of the Persian
language to find informative samples to enlarge the treebank. We propose a
new uncertainty sampling method, called combo uncertainty model, which
works based on word- and class-based parsing models and a meta-ranker on
the top of the two models. In this paper, we show that the combo uncertainty
model outperforms the individual word- and class-based models. Addition-
ally, we use these two parsing models for a query-by-committee sampling
method. Experimental results show that the combo uncertainty sampling
method is the best approach when developing a treebank with minimum num-
ber of sentences, but the query-by-committee method is a better choice when
the number of learnt words is taken into consideration.

1 Introduction

Availability of annotated data plays a very important role in supervised methods to
process a language automatically. Developing such data set is a very time consum-
ing and tedious task that requires a high amount of a human effort to annotate the
data. Active Learning (AL) is a supervised, machine learning method used for se-
lecting hard samples from a data pool, and it asks an oracle to annotate this portion
of data [20]. This learning method is different from passive learning in which large
amount of data should be annotated without using any intelligence to select data.
AL is widely used in various applications of Natural Language Processing (NLP)
that require annotated data, such as parsing [12, 1], information extraction [25], se-
mantic role labeling [4], machine translation [8], and name entity recognition [14]
to be named some.

A statistical parser requires a treebank to learn the grammar of the correspond-
ing language and apply the patterns at the unseen data. Languages like English
and German are rich in terms of the availability of large treebanks to train parsers.
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But there are languages like Persian which suffer from lack or small size of such
data source. AL is a great help to enrich the resources of the less considered lan-
guages. To reach the goal, informative samples which are hard for parsers should
be annotated by an oracle and be added to the training data, i.e. a treebank. In this
paper, several sampling models within uncertainty and query-by-committee sam-
pling methods are employed to find the informative samples. The selected samples
are annotated by an oracle and added to the treebank which is the training data of
a parser. The enlarged treebank improves the parsing performance consequently.

The structure of this paper is as follows: Section 2 describes the sketch of AL
along with the learning scenarios and the sampling methods. Section 3 explains
our AL models. The experimental setup and the obtained results are reported and
discussed in Section 4. Background on using AL for parsing and treebanking is
described in Section 5. The paper is finally summarized in Section 6.

2 Active Learning

2.1 Learning Scenarios

Stream-based [5] and pool-based [15] models are the two major learning scenarios
in AL which are very popular among researchers and frequently used in various
NLP applications. We use the pool-based sampling scenario for our application
such that in each iteration the learner first takes all the samples from the data pool,
and then it ranks them descendingly based on a selection criterion. Finally, it se-
lects top k samples from this list and hands the selected samples out to an oracle
for annotation.

2.2 Sampling Methods

Settles [20] introduced a number of sampling methods in AL. Among them, uncer-
tainty [15] and query-by-committee [21] sampling methods are the most popular
ones which are widely used for NLP applications. In uncertainty sampling, only
one learner is employed and the samples that the learner has the least confidence on
their annotation are selected according to a criterion and handed out to an oracle.
Entropy [22] is the most popular criterion to select samples for NLP applications,
such as parsing [1, 12]. In the query-by-committee sampling method, more than
one learner is used such that each learner proposes an annotation for each unanno-
tated sample. Then, among the samples, those which have the highest degree of
disagreement on the annotations among the committee of learners are selected as
informative samples, and they are handed out to an oracle for annotation.
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3 Our Proposed Sampling Methods

3.1 Uncertainty Sampling

Algorithm 1 displays the steps for selecting uncertain samples in our models. In
our AL application for treebanking, the learner is a parser that learns the grammar
of the Persian language.

Algorithm 1 Active Learning with Entropy-based Uncertainty sampling
Input: Seed data S from the Persian HPSG-based treebank, Pool of unlabeled samples U
repeat

Step1: Use S to train the parser P
Step2: Use P to parse U, and extract n-best (n=20) parse trees for each sentence
Step3: Compute tree entropy TE of each sentence based on the probability score of
the n-best parse trees
Step4: Sort descendingly the sentences based on their TE score
Step5: Select top K samples from the sorted parsed trees
Step6: Augment S with K samples, and remove K from U

until the stopping criterion is met

We use the entropy-based sampling method introduced by Hwa [12] to select
uncertain samples for enlarging the treebank. In each iteration of this method,
the entropy of each sentence is calculated based on the probability scores of its
n-best (n=20) candidate parse trees. If a grammar is certain about the structure of a
sentence, then one parse tree will be assigned a high score and the rest a low score
which results in a low entropy. While for uncertain sentences, all possible parse
trees will have relatively uniform scores and a high entropy consequently. The Tree
Entropy (TE) of sentence s is calculated according to Equation 1.

T E(s,G) =− ∑
v∈V

p(v)log2(p(v))

=− ∑
v∈V

P(v|G)

P(s|G)
log2(

P(v|G)

P(s|G)
)

(1)

where V (v ∈ V ) is the set of possible parses of s. P(v|G) is the probability score
of parse tree v which is provided by the parser. P(s|G) is the sum of probabilities
of its parses:

P(s|G) = ∑
v∈V

P(v|G) (2)

In our study, uncertainty sampling methods use Algorithm 1. In the first two
models, word- and class-based parsing described below, solely use the tree entropy
score as a criterion for selecting uncertain samples. In the third model, we employ
the two models and add a step to Algorithm 1 to use a meta-ranker on top of the
word- and class-based products to select the uncertain samples.
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Model 1: Word-Uncertainty In this model, we use a normal word-based parsing
model; i.e., the actual sentences in the treebank are used for training the parser, and
top k samples with high entropy are selected. This model is also evaluated based
on the word-based parsing.

Since the word-based parsing suffers from the data sparsity problem at both
lexical and syntactic rule levels, the k selected samples contain informative lexicon
and syntactic rules for the parser. We propose a model to reduce this complexity.

Model 2: Class-Uncertainty In Model 1, two levels of data sparsity, namely the
lexical and syntactic rule sparsity, are taken into consideration simultaneously, and
sentences which are more sparse are selected first. To reduce the effect of lexical
sparsity and put a higher priority on sentences with informative syntactic rules, we
use class-based parsing.

In class-based parsing, we first use a word clustering algorithm, such as the
Brown word clustering [3], to cluster the lexical items of a corpus in an off-line
mode. Since the number of clusters are much less than the number of words,
the class-based model provides a more coarse-grained representation of the lex-
ical knowledge which results in less data sparsity at the lexical level. Then, all
words in the sentences of the treebank are mapped to their corresponding clusters.
Afterwards, the mapped sentences are used for training a parser and parsing the
unannotated samples which are also converted to the corresponding clusters.

As shown in previous studies including Ghayoomi [7], the class-based parsing
improves the parsing performance compared to the normal word-based parsing.
Ghayoomi [7] pointed out a shortcoming of the Brown word clustering [3]. In this
algorithm, homographs are treated equally. To resolve this problem, Ghayoomi [7]
added the part-of-speech tags to the words to distinct homographs, and then per-
formed the clustering approach. After mapping the words of the treebank into their
corresponding clusters, Algorithm 1 is used for selecting k informative sentences.

To make the results comparable with other models and have a fair comparison,
the product of the class-based parsing is reconverted to the word-based format at
the end, and the model is finally evaluated based on the word-based parsing. The
advantage of the class-based parsing is reducing the lexical sparsity and minimiz-
ing its impact on sampling.

Model 3: Combo-Uncertainty Although uncertainty sampling normally per-
forms based on a single parser or parsing model, we propose a new uncertainty
sampling model which works based on the two models, called combo-uncertainty.
This model is a combination of Models 1 and 2. In this model, after parsing sen-
tences, computing their entropy, and ranking them descendingly in both models
separately, we use a meta-ranker on top of the two models to re-rank sentences
based on their average rank. Therefore, instead of the entropy score, each sentence
is assigned a score which is the average rank of the sentence in the two models.

As an example, assume that Sentence S is parsed with Models 1 and 2. Their
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outputs, Sw and Sc, obtain the ranks 12 and 4 in the descendingly sorted outputs.
Using the meta-ranker on the top of the models, the score 8 is assigned to S and the
position of S will be re-ranked based on the assigned score. After re-ranking sen-
tences, top k sentences from the re-ranked list are selected as the most informative
samples. The advantage of this model is that the properties of Models 1 and 2 are
taken into consideration for selecting samples.

3.2 Query-by-Committee Sampling

Model 4: Combo-Committee In this model, a combination of word- and class-
based parsing is employed in such a way that sentences are first parsed in both
models separately without using any criteria for sampling. Then, the output of
the class-based model is converted into its equivalent word-based model. This
conversion makes the products of the two parsers comparable.

To find the disagreement between the learners, we measure the disagreement
degree similar to the F−complement metric proposed by Ngai and Yarowsky [17].
The main idea of the F −complement metric is comparing the output of two learn-
ers while assuming one of them as gold data and the other one as guess data. This
comparison makes it possible to calculate the F-measure between the two models
for each pair of parses of a sentence, and the complement of this value is consid-
ered as the disagreement score. To select the disagreed candidates in our model, we
do not compute this disagreement score, but the output of the word-based parsing
as gold data is compared with the output of the class-based parsing as guess data,
and their F-measure is calculated. In the next step, the sentences are sorted ascend-
ingly based on their obtained F-measure. Then, the top k sentences which obtain
the lowest F-measure are selected as the most informative sentences for which the
two parsing models disagreed with the provided analyses and the parsers need such
data to be trained with.

3.3 Baselines

In addition to our proposed models, we use two sampling methods as baselines:
random sampling and sentence length. In random sampling, k sentences are ran-
domly selected in each iteration, and they are given to an oracle for annotation.
In sentence length sampling, sentences in the data pool are first ranked decend-
ingly based on the number of involved words, and then the longest k sentences are
selected as informative samples to be annotated by the oracle.

4 Results and Discussion

4.1 Experimental Setup

In all of our AL experiments, we use the Stanford constituent parser [13] as a
learner. The HPSG-based Persian Treebank [6] which contains 1028 trees is used
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for training and testing the parser. The data format of this treebank is XML which
is converted into its equvalent Penn style format [7]. Gold part-of-speech tags are
used in the experiments to avoid the negative interfering of tagging on parsing.
The data of the Bijankhan Corpus1 and the Persian Linguistic DataBase2 are used
for word clustering utilizing the SRILM toolkit [24] which contains the implemen-
tation of the Brown word clustering algorithm [3]. Experimentally we found out
that the class-based parsing of the extended clustering model described in Ghay-
oomi [7] obtains the highest performance of the parser with 1000 clusters. This
number of clusters is set to build the class-based model.

The reported results are based on the simulation of AL to be able to select
the best approach for a real application to enlarge the existing Persian treebank.
To this end, we divide the current treebank into three data sets such that 20% of
the data is considered as the seed data for initialization, 10% as the test data for
iterative evaluation and drawing the learning curve, and the rest is assumed as an
unannotated data in the data pool to be annotated. Since our models are processed
iteratively, k informative sentences (k=10) are selected in each iteration. 10-fold
cross validation is used for evaluating our models, and the results of the models are
compared with the baselines.

4.2 Results and Discussion

Figure 1 represents the learning curves of the entropy-based sampling models
(Models 1 to 3), the query-by-committee model and the random sampling as the
baseline. To make the results more readable, instead of representing the result of
each iteration, the average performance for each 5 iterations is shown in this figure.

As can be seen in Figure 1, the four proposed models have beaten random sam-
pling. This result indicates the superiority of using AL models towards our goal
which is increasing the size of the training data with informative samples. In the
early iterations, the results of Models 1 and 2 are compatible, but Model 3 outper-
forms the two models. In iteration 31, Model 1 beats Model 2, and later in iteration
35, it beats Model 3, and constantly this model has a better performance in the sec-
ond half of the annotation process. Model 4 has a slightly better performance than
the baseline in early iterations. Although it loses against the baseline in iteration 5,
it beats all of the models in iteration 40 and the performance of the parser improves
as the treebank enlarges.

Since it is expected to find the informative samples in early iterations of the AL
process, the first half of the annotation process is more important than the second
half. Comparing Models 1 to 4 and the baseline, we can conclude that Model 3
that has a meta-ranker can be chosen as the best method for selecting informative
sentences to enlarge the treebank and create a more accurate grammar model.

A drawback of the entropy-based sampling is that sentences which are rela-
tively long and might contain complex constructions are selected as informative

1http://ece.ut.ac.ir/dbrg/bijankhan/
2http://pldb.ihcs.ac.ir/
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Figure 1: Learning curves of the learnt sentences in uncertainty sampling models
and random sampling baseline
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Figure 2: Learning curves of the learnt sentences in Combo-Uncertainty model and
baselines

samples. To study this point, we use sentence length as the second baseline and
compare Model 3 with it. As can be seen in Figure 2, the sentence length model
has a relatively comparable performance with Model 3 which indicates that the
performance of entropy-based sampling is compatible with a naive model that uses
no intelligence to select informative sentences but only their length.

To prove this idea that the length of sentences are effective in selections of
entropy-based sampling, we display in Figure 3 the learning curves of Models 3
and 4 and the baselines based on the learnt words rather than the sentences (see the
x-axis).
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Figure 3: Learning curves of the learnt words in Combo-Uncertainty and Combo-
Committee models and baselines

As shown in this figure, there is a competition between the models in the early
iterations. Model 3 has a compatible performance with random sampling, and the
sentence length baseline has the worst performance which indicates that learning
long sentences does not guarantee to be informative for the treebank and the parser
consequently. Model 4 outperforms Model 3 and the baselines in the iteration 23
by learning minimum 6400 words which are almost third of the words in the data
pool. This model outperforms Model 3 and the baselines in the iteration 36 where
almost half of the words in the data pool are learnt. The difference between the
performance of the parser in this iteration in Model 4 and the performance of the
Model 3 and the baselines with the equal number of learnt words is statistically
highly significant according to the two-tailed t-test (p < 0.01). In this model, a
higher performance is obtained by learning a minimum number of words from the
data pool. This curve indicates that Model 4 is the best model for treebanking with
respect to the number of words to be learnt. This also indicates that the selected
samples from the data pool and adding their annotation to the training data are
effective in the performance of the parser to create a more accurate grammar model
and obtain a higher performance with a minimum number of words.

5 Previous Studies on AL for Parsing and Treebanking

AL is widely used for various NLP applications including parsing, either con-
stituency or dependency, to reduce a human effort in data annotation. In the fol-
lowings, we express briefly the sketch of the previous studies on using AL for
constituency parsing and treebanking.

Ratnaparkhi [19] proposed an AL model which uses a maximum entropy parser.
This parser selects the candidate parse trees with maximum entropy probability
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from a set of derived parsed trees. In the maximum entropy framework, features
are required as evidences to build the model. These features provide contextual in-
formation represented as chunks. The less specific contextual information is more
interesting in this AL model to “provide reliable probability estimates when the
words in the history are rare” [19]. The advantages of this sampling method are re-
ducing the impact of sentence length on the selection and building an independent
domain model.

Hwa [10, 11, 12] proposed a sampling method for inducing probabilistic lexi-
calized tree insertion grammars. In each iteration of the model, the entropy of each
sentence is calculated based on the probability scores of its candidate parse trees.
See Section 3.1 for more detail of this study.

Steedman et al. [23] proposed a co-training model in such a way that two dif-
ferent parsers are employed for sampling without any manual annotation. In each
iteration of the model, a small set of sentences are pulled out from the data pool
and stored in a cache. Then, the parsers parse the sentences in the cache. After
that, a subset of the parsed sentences is selected and added to the training data.
The selected data is the product of one parser which is added to the training data
of the other parser. During the selection step, one parser first acts as a teacher and
the other as a student, and then the roles are reversed.
The most important issue in this model is that the selection process is based on the
accuracy score rates. To this end, two scoring functions are defined: (a) a scoring
function based on the F-measure of the analysis against the gold data, and (b) a
scoring function based on the conditional probability of the parser. Three sampling
methods are exploited in the model: (a) defining a score as a threshold to select
the most accurate analyses, (b) computing the difference score of the teacher and
the student to choose the candidates in which the teacher is more accurate, and (c)
finding the intersection between the n percent highest scores of the teacher and the
n percent lowest scores of the student for the same sentence to select sentences
which are accurately parsed by the teacher and incorrectly by the student.

Baldridge and Osborne [1, 2], and Osborne and Baldridge [18] described a
method for AL of HPSG parse selection. They used the sentence entropy-based
uncertainty sampling, a query-by-committee sampling method between log-linear
and perceptron algorithms as the learners, and a combined selection method that
takes the intersection of entropy- and disagreement-based models. Features are
required to build the models. Two feature selection methods are exploited: (a)
selecting features from derivation trees, and (b) extracting n-gram features from
flattened derivation trees which are treated as a sequence of rule names.

Hughes et al. [9] described a system for selecting samples based on the combi-
natory categorial grammar through an interactive correction process. In this model,
human annotators have an interaction with the system such that they add the con-
straints to the parser that return the most probable parse results which have satisfied
all constraints. The informative samples are selected via a pool-based AL process
in a query-by-committee model.

Lynn et al. [16] built a query-by-committee model for developing the Irish
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dependency treebank. To this end, the disagreement between a committee of two
parsers, namely the Malt and Mate dependency parsers, was considered as the
sampling criterion.

6 Summary

In this paper, we employed the two well-known sampling methods, namely uncer-
tainty sampling and query-by-committee, in AL for treebanking of Persian. To this
end, we used word- and class-based parsing and the combination of both. Addi-
tionally, sentence length and random sampling are used as the baselines.

For uncertainty sampling, we used three entropy-based sampling methods in
such a way that the word- and class-based parsing and the combination of the two
with a meta-ranker on top were employed to select the informative samples from
the data pool which are informative for the treebank and the parser as a result.
The results showed that the entropy-based sampling method with a meta-ranker
outperformed the other two models and the baselines.

Although entropy-based sampling methods outperformed random sampling,
comparing its result with sentence length baseline determined that selecting rel-
atively long sentences in entropy-based models is the main reason to achieve a bet-
ter performance. To tackle this shortcoming, we proposed a query-by-committee
sampling method. In this model, the two parsing models, word- and class-based
parsing, were used for finding the informative samples without the impact of sen-
tence length on selection. In this model, the sentences that the parsers disagreed
with their analysis and obtained a low F-measure are selected and added to the
treebank. This model selected the informative samples disregarding the sentence
length, and increased the performance of the AL process with minimum growth
of the words to be learnt. This model can be used for further data annotation to
increase the size of the current Persian treebank with minimum words.
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Abstract 
 

This paper utilizes three linguistically annotated text corpora of contemporary and 
diachronic German to trace the historical development of the fronting of auxiliaries 
triggered by so-called substitute infinitive forms. The paper demonstrates the added 
value that annotated corpora can provide for in-depth studies in historical syntax. 
At the same time it showcases the added value of interoperable language resources 
for linguistic investigations that require access to and analysis of multiple linguistic 
resources. 

1 Introduction 
The historical development and the linguistic triggering environments for 
auxiliary fronting in German is a long-standing research question in German 
linguistics, dating at least as far back as Jacob Grimm's famous Deutsche 
Grammatik [6]. Auxiliary fronting occurs in subordinate clauses as in (1) and 
involves, inter alia, modal verbs such as können and müssen.  
 

(1) a.  dass Eike gesungen hat. 
  that  Eike sung         has. 
  ‘that Eike has sung.’ 
b. dass Eike hat singen {können /     müssen}. 
  that  Eike has sing      be able to / have to. 
  ‘that  Eike was able / had to sing.’ 
c. * dass Eike singen {können /     müssen}   hat. 
     that  Eike sing       be able to / have to    has. 
d. * dass Eike kommen {gekonnt / gemusst} hat. 
       dass Eike come       be able /   have to    has 
e. * dass Eike hat kommen {gekonnt / gemusst}. 
       dass Eike has come       be able /  have to. 
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(1a) shows that the finite auxiliary in a German subordinate clause normally 
appears in clause-final position. However, when the finite auxiliary governs 
a modal such as können or müssen, as in (1b), then the finite auxiliary is 
fronted. The ungrammaticality of (1c) shows that in such cases auxiliary 
fronting is, in fact, obligatory. Auxiliary fronting appears in conjunction with 
so-called Ersatzinfinitiv (substitute infinitive) forms of past participles for 
modal verbs such as können (instead of the expected past participles gekonnt) 
und müssen (instead of the expected gemusst) as the ungrammaticality of 
(1d) and (1e) illustrates. There are at least two considerations that make a 
diachronic corpus study of the auxiliary fronting construction worthwhile 
and significant: (i) starting with the work of Jacob Grimm, German linguists 
have been wondering about the historical development of this construction 
and the curious interplay between auxiliary fronting and the accompanying 
substitute infinitive forms, (ii) the empirical generalizations about the range 
of verbs participating in the fronting construction have been rather unclear 
and a matter of considerable controversy. In many cases, such empirical 
generalizations have largely been based on grammaticality judgments of 
native speakers. Considering corpus data and thereby broadening the 
empirical evidence appears to be a much-needed extension of previous 
research. Such corpus evidence has not been available until very recently, 
due to the unavailability of digital corpora with sufficient amounts of data 
and linguistic annotations. The availability of such corpora as part of the 
Common Language Resources and Technology Infrastructure (CLARIN)1 
has made it possible to fill this gap. The present study will make use of three 
linguistically annotated corpora: the Tübingen treebanks TüBa-D/Z [13] and 
TüPP-D/Z [10] and the German Text Archive DTA [5] of historical texts 
hosted at the Berlin-Brandenburg Academy of Sciences (BBAW). 

A crucial aspect of the linguistic investigations made possible as part of 
the CLARIN infrastructure concerns the interoperability of the treebanks and 
DTA resources mentioned above. Since all resources involved share a 
common layer of part-of-speech annotation, using the same STTS tag set 
[11] for German, it becomes possible to search for the same patterns in all 
resources and thus track linguistic change over more than four centuries. 

The remainder of the paper is structured as follows: Section 2 presents a 
more complete overview of the auxiliary fronting construction. In section 3, 
the three corpora used in this study will be introduced. Section 4 presents the 
empirical results of the corpus study and interprets these results in a 
diachronic perspective. Section 5 summarizes the main results and indicates 
some directions for future research. 

                                                        
1 www.clarin.eu 
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2 Auxiliary Fronting in German 
This section gives an overview of the auxiliary fronting construction in 
German. This overview covers the different tenses in which it occurs as well 
as the different classes of verbs that can trigger this construction. As 
mentioned above, the grammaticality judgments about the construction are 
subject to considerable variation. This variation is mainly attributed to 
dialectal differences. The grammatical judgments reported in this section 
follow those reported in [3], which presents the most comprehensive 
overview of the construction in recent years. 

The construction occurs only with coherent infinitive constructions in the 
sense of Gunnar Bech [1]. Coherent infinitive constructions involve bare 
infinitives, while incoherent infinitive constructions involve zu-infinitives. 
The examples in (2) illustrate seven different verb classes that enter into the 
coherent infinitive constructions in the perfect tense in German.2 The reason 
for distinguishing these seven classes has to do with the following two 
factors: (i) whether auxiliary fronting is obligatory or not, and (ii) whether 
the use of a substitute infinitive is obligatory or whether an ‘ordinary’ past 
participle is also licit. 
 

(2) a. dass sie {* arbeiten gekonnt hat / * arbeiten können     hat / 
  that  she     work      be able  has /    work       be able to has/ 
   hat arbeiten können}. 
             has work      be able to 
  ‘that she was able to work.’  
 b.  dass sie nicht {? arbeiten gebraucht hat / * arbeiten brauchen hat   
  that she not         work      needed     has /     work      needed    has 
  / hat arbeiten brauchen}. 
  / has work      needed 
  ‘that she did not need to work.’ 
 c. dass sie  ihn {arbeiten gelassen hat / arbeiten lassen hat /  
  that  she him  work      let           has / work      let       has 
  hat arbeiten lassen}. 
  has work      let 
  ‘that she let him work.’ 
 d. dass sie ihn {arbeiten gesehen hat / arbeiten sehen hat /  
             that she him  work      see         has / work      see     has / 
  hat arbeiten sehen}. 
  has work      see 
  ‘that she saw him work.’ 
 
 
 
                                                        
2 The examples are taken from [3], p. 250 

63



 e. dass sie {arbeiten gelernt hat / * arbeiten lernen hat /  
  that she   work      learnt   has /    work      learnt   has / 
  * hat arbeiten lernen}. 
     has work      learnt 
  ‘that she has learnt how to work.’ 
 f. dass sie {sitzen geblieben ist / * sitzen bleiben ist /  
  that  she  sit       remained is  /    sit      remain  is / 
  * ist sitzen bleiben}. 
     is  sit      remained 
  ‘that she remained seated.’ 
 g. dass sie {arbeiten gegangen ist / * arbeiten gehen ist /  
  that  she  work      gone        is  /     work       gone  is / 
  * ist arbeiten gehen}. 
     is  work       gone 
  ‘that she went to work.’ 

 
Apart from modal verbs such as können, as in (2a), it concerns the negated 
form of the auxiliary brauchen, as in (2b). In both cases, the fronting of the 
finite auxiliary is obligatory. For the auxiliary lassen and AcI verbs such as 
sehen, as in (2c) and (2d), fronting is optional, and both the substitute 
infinitive and the past participle forms are admissible. For the remaining 
cases of coherent infinitive constructions in (2e-2g), auxiliary fronting is 
ungrammatical, and only the past participle forms are possible. 

In addition to the perfect tense, auxiliary fronting also occurs in the 
pluperfect with forms of hatten (instead of haben as in (2)) and in the future 
tense with forms of werden as in (3).3 
 

(3) a. dass sie {arbeiten können     wird / wird arbeiten können} 
  that she   work      be able to will /  will  work      be able to 
  ‘that she will be able to work.’  
 b.  dass sie nicht {arbeiten brauchen wird / wird arbeiten brauchen} 
  that she not      work      need         will /  will  work      need 
  ‘that she did not need to work.’ 
 c. dass sie ihn {arbeiten lassen wird / wird arbeiten lassen}. 
  that  she him work      let       will /  will  work      let 
  ’that she will let him work.’ 
 d. dass sie  ihn {arbeiten sehen wird / wird arbeiten sehen}. 
  that  she him  work      see     will /  will  work       see 
  ‘that she will see him work.’ 
 e. dass sie {arbeiten lernen wird / wird arbeiten lernen}. 
  that  she  work      learn    will /  will work       learn 
  ‘that she will learn how to work.’ 
 

                                                        
3 The examples are taken from [3], p. 250 
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 f. dass sie {sitzen bleiben wird / wird sitzen bleiben}. 
  that  she  sit      remain will  /  will  sit       remain 
  ‘that she will remain seated.’ 
 g. dass sie {arbeiten gehen wird / wird arbeiten gehen}. 
  that  she  work      go       will /  will  work      go 
  ‘that she will go work.‘ 

 
The grammaticality judgments presented in (3) differ from those shown in 
(2) for the perfect tense in two respects: fronting of word forms of werden is 
considered optional in all cases and grammatical for all seven verb classes 
(see [8] for more discussion). 

The examples in (2) and (3) show the data set that is covered by the 
corpus study presented in section 4 below. There are additional facts about 
the construction that are exemplified in (4). For reasons of space, they are not 
within the scope of the present study. 
 

(4)  a.  dass er nicht wird länger bleiben können. 
  that  he not    will  longer stay      be able to 
  ‘that he will not be able to stay longer.’ 
 b.  dass er das Examen bestehen wird können. 
  that  he the exam      pass        will  be able to 
  ‘that he will be able to pass the exam.’ 
 c. dass er  den  net will         komme lasse. 
  that  he  him not wants to  come   let 
  ‘that he does not want to let him come.’ 

 
In (4a) the auxiliary wird is not the leftmost element in the verbal complex, 
but is fronted to the left of a preceding adverbial. Example (4b) is an instance 
of the so-called Zwischenstellung (intermediate position), where the finite 
auxiliary does not occupy the leftmost position in the verbal complex, but 
rather is placed as the leftmost auxiliary to the right of the main verb. 
Example (4c) is from [4]; it belongs to the Swabian dialect of German, where 
the auxiliary fronting construction has been generalized to the verb wollen. 

Apart from the usage patterns of auxiliary fronting attested for modern 
German, the origin and the historical development of the construction are a 
matter of considerable interest and debate. The explanations given in the 
literature range from morphosyntactic accounts [6] to semantic ones [12]. 
The hypothesis put forth by Jacob Grimm ([6], p. 168) rests on the 
assumption of an accidental identity of the infinitival and past participle 
forms of strong verbs, which had a tendency to drop their prefix ge-, thus 
resulting in past participle forms such as lassen (rather than ge-lassen) that 
are identical to the infinitive. Grimm points out that the dropping of the ge- 
prefix is well attested historically for highly frequent strong verbs such as 
heißen, lassen, and sehen. He considers this finding as supporting evidence 
for his hypothesis concerning the origin of the construction. 
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3 The TüBa-D/Z, TüPP-D/Z and DTA corpora 
The TüBa-D/Z4 treebank is an annotated German newspaper corpus based on 
data taken from the daily issues of ‘die tageszeitung’ (taz). The TüBa-D/Z 
currently comprises 75,408 sentences (1,365,642 tokens). Figure 1 illustrates 
the annotation layers of part-of-speech annotation and syntactic annotation, 
including the annotation of auxiliary fronting construction. 

 
Figure 1: Annotation of auxiliary fronting in the TüBa-D/Z 

 
The terminal nodes in the parse tree are labeled with part of speech tags 

taken from the STTS tag set. Non-terminal nodes of the tree include maximal 
projections of lexical categories such as ADVX (adverbial phrase), NX 
(noun phrase), and PX (prepositional phrase), but also a layer of topological 
fields such as VF (Vorfeld), LK (Linke Klammer), MF (Mittelfeld), and VC 
(Verbkomplex). Topological fields in the sense of Höhle [9], Herling [7], and 
Drach [2] are widely used in descriptive studies of German syntax. Such 
fields constitute an intermediate layer of analysis above the level of 
individual phrases and below the clause level. Auxiliary fronting is annotated 
by a special tag VCE (short for: Verbkomplex mit Ersatzinfinitiv; verbal 
complex extension) that dominates the preterminal label AUX of the fronted 
auxiliary. 

Apart from syntactic phrase labels and topological fields, the syntactic 
annotation layer of the TüBa-D/Z also includes grammatical function 
information. Grammatical functions are annotated as edge labels that connect 
nodes labeled with syntactic categories. Grammatical function labels include 
HD (short for: head of a phrase) and nominal complement labels ON and 
OA, OD, and OG (short for: nominative, accusative, dative, and genitive 

                                                        
4 www.sfs.uni-tuebingen.de/ascl/ressourcen/corpora/tueba-dz.html 
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complements), MOD (short for modifier) and OA-MOD (short for: modifier 
of an accusative complement). Table 3.8 on page 18 of the TüBa-D/Z 
Stylebook [13] presents a complete overview of all grammatical functions 
that are distinguished in the TüBa-D/Z treebank. 

The TüPP-D/Z (Tübingen Partially Parsed Corpus of Written German)5 
corpus uses as its data source the Scientific Edition of the taz German daily 
newspaper6, which includes articles from September 2, 1986 up to May 7, 
1999. All articles have been automatically annotated with clause structure, 
topological fields, and chunks, as well as parts of speech and morphological 
ambiguity classes. All texts are processed automatically, starting from 
paragraph, sentence, word form, and token segmentation. A more in-depth 
description of the linguistic annotation can be found in the TüPP-D/Z 
stylebook [10], and information about the actual XML encoding of linguistic 
annotation can be found in the TüPP-D/Z markup guide [14]. The TüPP-D/Z 
corpus does not contain any special markup for the auxiliary fronting 
construction. On the basis of the topological field annotation in the TüPP-
D/Z corpus, instances of the auxiliary fronting construction can, however, be 
easily found in the corpus with the use of the TIGERsearch query tool. 

The German text archive (DTA)7 contains texts ranging from 1610 to 
1900. The texts have been digitized and transliterated, using a high-precision 
double-keying method. The archive is still under construction. The version 
used for the present study dates from April 2013 and consists of 65,903,329 
word tokens taken from 288,013 digitized pages. The texts represent 
different genres, including novels and other literary works, scientific and 
journalistic texts.8 

The linguistic annotation of the DTA is at the level of individual word 
forms. It includes lemmatization, part-of-speech information, and spelling 
normalization. The latter is very important for historical German texts due to 
the lack of spelling norms in previous centuries. The part-of-speech and 
lemma information is sufficient to define highly reliable search patterns for 
the DTA text collection, using the query syntax provided by the online 
search tool available on the DTA webpage. More information about the 
query syntax is available online9. 

The interoperability of the linguistic annotation in the three corpora is of 
utmost importance for the present study. This interoperability is ensured by 
the use of the same tag set, STTS, in the DTA and in the two treebanks. The 
syntactic annotation in the treebanks, which is not entirely identical, contains 
in both cases topological field information, which is crucial for the precision 

                                                        
5  http://www.sfs.uni-tuebingen.de/ascl/ressourcen/corpora/tuepp-dz.html 
6 www.taz.de 
7 http://www.deutschestextarchiv.de/ 
8  More information about the genres represented in the DTA is given at 
   http://www.deutschestextarchiv.de/web/doku/textauswahl. 
9 http://www.deutschestextarchiv.de/doku/DDC-suche_hilfe 
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and recall of searching for the fronting construction. Precision and recall is, 
of course, the highest in the case of the TüBa-D/Z treebank since it contains 
dedicated labels that mark all instances of this construction. The search 
results are noisier for the other two corpora since the search is heuristic in 
nature, relying on the word order and morphosyntactic properties of the 
construction. 

4 Corpus Query Results 
This section presents the quantitative results of the corpus queries in the 
three linguistically annotated corpora described in the previous section. 

4.1 Auxiliary Fronting for werden 
Table 1 shows the results for the fronting of the forms of werden in the future 
tense.10 The presentation of the data follows the order of presentation in 
example (2) above. 

 
 TüBa-D/Z TüPP-D/Z DTA 
arbeiten können wird 
wird arbeiten können 

0 
9 

57 
1092 

3 
852 

arbeiten lassen wird 
wird arbeiten lassen 

4 
2 

476 
70 

187 
233 

arbeiten sehen wird 
wird arbeiten sehen 

0 
0 

12 
0 

5 
16 

arbeiten lernen wird 
wird arbeiten lernen 

0 
0 

2 
1 

40 
32 

sitzen bleiben wird 
wird sitzen bleiben 

0 
0 

43 
23 

17 
12 

arbeiten gehen wird 
wird arbeiten gehen 

0 
0 

9 
8 

1 
2 

Table 1: Corpus results for the placement of the auxiliary werden 
 

Each row in Table 1 represents the raw counts of the pattern in question in 
the three corpora. There is a big difference in the number of relevant data 
points present in the TüBa-D/Z and the other two corpora. The TüBa-D/Z 
with 1,365,642 tokens only contains examples with modal auxiliaries and 
with lassen. The patterns in question for the remaining five verb classes do 
not appear at all in the corpus. By contrast, the other two corpora with more 
than 200 million tokens (TüPP-D/Z) and approx. 66 million tokens (DTA) 

                                                        
10 In Table 1 and in Table 2 below, the auxiliary in question is rendered in 

boldface. For each of the seven verb classes, the number of occurrences with the 
comparatively higher frequency in a particular corpus is also shown in boldface. 
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are many times larger, leading to a much wider spread of data points across 
the different verb classes. For both the TüPP-D/Z and the DTA, modal 
auxiliaries are by far the most frequent class, and the verb lassen the second 
most frequent class. 

There is an interesting difference in the relative frequency of fronted 
auxiliaries and auxiliaries in clause-final position. Fronted werden is the 
preferred pattern for the class of modals. This is true both synchronically (in 
the taz corpus) and diachronically (in the DTA corpus collection). For lassen, 
verb-final placement is more frequent (by a factor of approx. 7) 
synchronically (in the taz corpus), while the fronted auxiliary position is 
slightly more frequent in the diachronic corpus. If one considers the relative 
frequency of fronted and clause-final werden over time, then the following 
dynamics is evident: historically, fronting occurred with all seven verb 
classes. The only verb class for which the verb-final position is strongly 
dispreferred are the modal auxiliaries. Synchronically, there is a clear split 
between the modals, for which fronted werden is much more frequent and all 
the other verb classes, for which verb-final placement is strongly preferred. 

4.2 Auxiliary Fronting for the perfect tense  
Table 2 shows the results for the fronting of the forms of haben in the perfect 
tense. The presentation of the data follows the order of presentation in 
example (3) above. 

 
 TüBa-D/Z TüPP-D/Z DTA 
hat arbeiten können 
* arbeiten gekonnt hat 
* arbeiten können hat 

62 
0 
0 

6888 
0 
7 

5440 
0 
0 

hat arbeiten lassen 
arbeiten gelassen hat 
arbeiten lassen hat 

14 
0 

38 

1921 
40 
17 

1412 
13 

3 
hat arbeiten sehen 
arbeiten gesehen hat 
arbeiten sehen hat 

62 
0 
1 

1178 
0 
2 

233 
16 

0 
* hat arbeiten lernen 
arbeiten gelernt hat 
* arbeiten lernen hat 

0 
2 
0 

1 
141 

0 

114 
540 

0 
* ist sitzen bleiben  
sitzen geblieben ist 
* sitzen bleiben ist 

0 
0 
0 

0 
49 

0 

0 
65 

0 
* ist arbeiten gehen 
arbeiten gegangen ist 
arbeiten gehen ist 

0 
0 
0 

0 
39 

1 

0 
16 

1 
Table 2: Corpus results for the placement of the auxiliary haben 
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As in Table 1, Table 2 shows a striking difference in the number of data 
points between the TüBa-D/Z and the other two corpora, due to radically 
different corpus sizes. As in the case of werden, modal verbs provide by far 
the largest number of data points, followed by the verb lassen. AcI verbs 
form the third most frequent class in the TüPP-D/Z, outranking the verb 
lernen. In the DTA, these frequency ranks are reversed. It seems plausible 
that this difference is due to genre differences between the two corpora. 
TüPP/D-Z has newspaper articles as its data source, where AcI verbs are 
expected to occur with higher frequency. 

Table 2 confirms that auxiliary fronting is obligatory for forms of haben 
that govern modal verbs, lassen, or AcI verbs such as sehen, while the 
clause-final position is used for the remaining verb classes. This is true for 
both the synchronic data and for the diachronic data of the DTA. The fact 
that lassen and sehen are used with high frequency in the DTA and that the 
ordinary participial form gelassen and gesehen are hardly attested in the 
DTA also confirms Grimm’s observation that these verbs had a tendency to 
drop their ge- prefixes, thus resulting in an identity of form between the 
infinitive and the participle. It appears that this usage pattern is firmly 
established by the 17th century, the earliest period covered by the DTA. In 
fact, the use of such Ersatzinfinitives has already spread to modal auxiliaries, 
as the usage patterns for modals in Table 2 shows. This empirical finding is 
at least consistent with Grimm’s view ([6], p. 169) that the construction dates 
back in time to the 13th/14th century and that it arose as a contact 
phenomenon with the Dutch language. 

It seems appropriate to add some methodological remarks about the 
nature of the data and about the findings obtained from them. What these 
corpus data reveal are patterns of usage of the construction in authentic 
written materials. However, language use and judgments of grammaticality 
should not be confused or equated with one another. Grammaticality 
judgments concern both positive data (deemed to be grammatical) and 
negative data (classified by native speakers to be ungrammatical). Corpus 
data can only provide tendencies of actual language use. Needless to say, the 
absence of certain data from large corpora, while not to be equated with data 
judged ungrammatical by native speakers, is certainly informative and 
significant for linguistic theorizing. 

5 Conclusion 
The use of historical and synchronic corpora, which include relevant levels 
of linguistic annotations, makes it possible to track syntactic constructions 
across time and to witness syntactic change. The case study of auxiliary 
fronting in German has shown that massive amounts of data are necessary if 
the construction is relatively rare. This, in turn, means that data mining of a 
sufficient amount of instances of such constructions cannot rely exclusively 
on manually annotated corpora such as the TüBa-D/Z treebank, but will have 

70



to make use of (semi-)automatically annotated corpora such as the TüPP-D/Z 
corpus. Linguistic annotation of the data sources for data mining is crucial 
since it is impossible to manually search large data sets. High-quality 
linguistic annotation makes it possible to define search queries that result in 
high accuracy of the search results. If several data sources are utilized, as in 
the case at hand, then interoperability among the annotations present in the 
individual corpora greatly facilitates a meaningful comparison of the query 
results obtained from each corpus. In the case at hand, the use of a common 
tag set (STTS) in all three corpora ensures such interoperability. 

The present corpus study, based on the Tübingen treebanks TüBa-D/Z 
and TüPP-D/Z and on the German Text Archive DTA of historical texts 
corroborates Grimm’s conjecture that the construction originated with past 
participles of high-frequency strong verbs, which had a tendency to drop 
their ge- prefix. Corpus evidence over more than four centuries also clearly 
shows that the construction has been generalized over time to the fronting of 
the auxiliary werden for modals. In future work, it would be fascinating and 
highly worth-while to be able to extend the diachronic investigation of 
auxiliary fronting further back in time, ideally to the 13th and 14th century, 
which according to Grimm mark the period when the construction first 
entered the German language.  
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Abstract

In this paper, we present our work towards the effective expansion of tree-
banks by minimizing the human efforts required during annotation. We are
combining the benefits of both automatic and human annotation for manual
post-processing. Our approach includes identifying probable incorrect edges
and then suggesting k-best alternates for the same in a typed-dependency
framework. Minimizing the human efforts calls for automatic identification
of ambiguous cases. We have employed an entropy based confusion measure
to capture uncertainty exerted by the parser oracle and later flag the highly
uncertain predictions. To further assist human decisions, k-best alternatives
are supplied in the order of their likelihood. Our experiments, conducted for
Hindi, establish the effectiveness of the proposed approach. We exercised
label accuracy as a metric to show the effectiveness by increasing it with
economically viable manual intervention. This work leads to new directions
in the expansion of treebanks by accelerating the annotation process.

1 Introduction

Last decade has witnessed an increasing interest in dependency-based approaches
to syntactic parsing of sentences [19]. It has been observed that morphologically
rich and free word order languages can be better handled using the dependency
based framework than the constituency based one [2].

A major goal of dependency parsing research is to develop quality parsers, that
can provide reliable syntactic analysis to various NLP applications such as natural
language generation [21], machine translation [22], ontology construction [18],
etc. To build such high-quality dependency parsers, there is a certain need of high-
quality dependency annotated treebanks for the training and the evaluation phases
involved [4]. Since the parsing accuracy largely depends on the amount of labeled
training data, annotated data plays a crucial role [7]. The obstacle in building
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large sized annotated data is the availability of human experts for the process of
annotation.

In past, different approaches had been implemented to address the problem of
availability of annotated data. Developing automatically annotated treebanks [20]
was one of the proposed solutions. But the disadvantage with this approach is the
presence of parsing errors in automatically parsed data. The remedy is to carry
out a manual validation step to eradicate the errors in the automatic parsed data.
However, validating the whole data is still time consuming and it might be argued
that the annotation of whole dataset from scratch, by an expert annotator, would
have been a better choice since it will result in much more accurate annotated
data with comparable increase in time. Also the increase in time can be justified
against the more accurately annotated data which results in better data driven NLP
systems. Dickenson et al. in [5, 6] proposed a selective review process where
a human validator only reviews the cases highly probable to be erroneous. They
identified ad hoc rules from the treebank, which are unlikely to be used in general,
and later compare these rules on the parsed data. The anomalous part of the parse
tree as per the ad hoc rules is flagged as potential error which is later subjected to
manual validation.

Our approach involves running a data driven dependency parser followed by a
selective human validation step. But instead of validating all the edges, validation
will be done for the edges, in which the involved parser is highly uncertain dur-
ing prediction. We have employed an entropy based confusion measure to capture
uncertainty exerted by the parser oracle and later flag the highly uncertain predic-
tions. To further assist human decision, we also provide k probable alternatives in
the order of their likelihood. In all, the approach comprises of the following two
steps:-

• Identification of probable incorrect predictions.
• Selection of k-best alternates.

2 Background

The fundamental notion of dependency is based on the idea that the syntactic struc-
ture of a sentence consists of binary asymmetrical relations between the words,
termed as dependencies. In a typed dependency framework, the relation between
a pair of words, is marked by a dependency label, where one of the nodes is head
and other is dependent [10]. Figure 1 shows the syntactic relations1 between the
words of a sentence and the dependency labels marked along the edges.

1k1: Doer, k1s: Noun Complement, k3: Instrument, k5: Source, k7p: Place, k7t: Time, pof:
Part-of (complex predicate), nmod: Noun Modifier, lwg__psp: Local-word-group postposition
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(( mohn n� )) (( lAl sAb� n s� )) (( ÜAn )) (( EkyA ))
Mohan Erg. red soap Inst. bath do

ROOT

lwg__psp

pof

k3

k1

lwg__pspnmod

Figure 1: Example of Dependency Tree with syntactic relations.

We have worked with Hindi, a relatively free-word-order and morphologically
rich, Indo-Aryan language. In previous attempts to parse Hindi[1], it has been
observed that UAS2 is greater than LS3 by ∼ 6 percentage points, which is recon-
firmed by our baseline parser (later described in Section 4) where UAS is 6.22%
(UAS - LS) more than LS. The UAS in our baseline is well above 90% (92.44%)
while the LS is still 86.21%. This drives us to focus on improving LS, to boost the
overall accuracy(LA4) of the parser.

Dependency annotation scheme followed in Hindi Dependency Treebank [3]
consists tag-set of ∼ 95 dependency labels which is comparatively larger than the
tag-set for other languages5, like Arabic(∼ 10), English(∼ 55), German(∼ 45) etc.
This apparently is a major reason behind the observed gap between LS and UAS for
Hindi parsing. One of the frequent labeling errors that the parser makes is observed
to be between closely related dependency tags, for eg. k7 (abstract location) and
k7p (physical location) are often interchangeably marked [17]. We have reasons
to believe that such a decision is comparatively tougher for an automatic parser to
disambiguate than a human validator.

In the past, annotation process has benefited from techniques like Active Learn-
ing [14] where unannotated instances exhibiting high confusions can be prioritized
for manual annotation. However, in Active Learning, the annotators or validators
generally have no information about the potentially wrong sub-parts of a parse
and thus full parse needs to be validated. Even if the the annotators are guided to
smaller components (as in [15]), the potentially correct alternates are not endowed.
In our approach the validator is informed about the edges which are likely to be
incorrect and to further assist the correction k best potential label-replacements
are also furnished. So, effectively just partial corrections are required and only
in worst case (when a correction triggers correction for other nodes also) a full
sentence needs to be analyzed.

2UAS = Unlabeled Attachment Score
3LS = Label Accuracy Score
4LA = Labeled Attachment Score
5As observed on the CoNLL-X and CoNLL2007 data for the shared tasks on dependency parsing.
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The efforts saved in our process are tough to be quantified, but the following
example provides a fair idea of efficacy of our proposition. In figure 2, second
parse has information of the probable incorrect label and also has 2 options to cor-
rect the incorrect label to guide a human validator.

(1) ...
...

j�lo\
prisons

m�\
in

sm-yA
problems

hl
solve

krn�
do

...

...
... solve problems in prisons ...

krn�(do)

j�lo\(prisons)

ccof

sm-yA(problems)

k1

hl(solve)

pof

v/s krn�

j�lo\

#ccof(ccof,k7p)

sm-yA

k1

hl

pof

Figure 2: Example showing output from conventional parser v/s output from our
approach. Arc-label with ‘#’ represents incorrect arc label (confusion score > θ)
along with 2-best probable arc labels.

3 Methodology

The second sub-figure in figure 2 shows a typical output from our approach. The
overall methodology, to obtain such an output, is divided into two sequential steps:-

1. Predicting Incorrect Labels: First we intend to predict and flag potentially
incorrect labels. Some recent efforts have tried to extend the functionality of the
parser with additional information on the quality of the output parse. Mejer and
Crammer [12] have worked with MSTParser [11] to give confidence scores for at-
tachments while Jain and Agrawal [8] have worked with MaltParser [13] to render
the confusion scores for arc-labels. Since our focus is on arc-labels we follow the
approach proposed in [8]. They captured the confusion exerted on the parser’s
oracle while predicting a parser action and propagated it to the arc-label of the de-
pendency tree. The quantification of confusion is done by calculating entropy with
the class membership probabilities of the parser actions.

We obtained the confusion score for each arc-label in our data. Next, we ob-
tained a threshold (θ = 0.137) for which the maximum F1-score is observed for in-
correct label identification on the development set(Figure 3). In figure 2, the edge
with the label ‘ccof’ has been flagged (#) because the confusion score is greater
than θ, which signifies that it is probably incorrect. The proposition is indeed cor-
rect as the correct label is ‘k7p’ instead of ‘ccof’.

The additional details about the correctness of an arc-label, can duly indicate
the cases where the probability of the arc-label to be incorrect is high. In our efforts
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to minimize the human intervention, we propose to subject the reviewer only to
those cases where the confusion score is above θ. At this stage (i.e. without step 2)
the reviewer will be required to judge ‘if the flagged label is indeed incorrect’ and
if it is, then choose the corresponding correct label among all the remaining labels.
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40
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100
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en
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Figure 3: Precision, Recall and F1-score for various values of confusion score on
‘Hindi’ development set.

2. k-Best Dependency Labels for the Flagged Arc-Labels: To further assist
human decision, we also provide k probable alternatives in the order of their like-
lihood as proposed by the oracle. The reason behind this hypothesis is that it is
likely that the correct label exists among the top label candidates. This, potentially,
can give quick alternates to the reviewer for choosing the correct label and thereby
speedup the review process.

The likelihood of the arc-labels is obtained and ranked using the following
three strategies:-

• Voting: The list of predicted labels, using voting mechanism, is sorted in
decreasing order of number of votes from nC2 binary classifiers, obtained
during classification. We choose the top k labels from this sorted list as the
k-best alternate labels.

• Probability: The calculation of confusion scores demand for class member-
ship probabilities for arc-label (refer step 1). The posterior probabilities for
the candidate labels can also be alternatively used to emit out the resultant
dependency label. Similar to voting scheme, the labels are sorted in decreas-
ing order of their probabilities. The sorted list of predicated labels may differ
from that of voting mechanism, which motivate us to also consider probabil-
ity for choosing the k-best dependency labels.

• Voting + Probability: A tie can occur between two or more labels in the
list of k-best candidate labels if their votes/posterior probabilities are same.
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However, the phenomenon is unlikely in case of probabilities due to the real
valued nature calculated up-to 10 decimal places. On the other hand votes
are integer-values ({0, ..., nC2}, where n is number of labels) and are much
more susceptible to ties. The tie in voting can be resolved using complement
information from probabilities (and vice-versa).

4 Experiments

In our experimental setup, we assume the availability of a human expert for valida-
tion of the machine parsed data, who, when queried for a potential incorrect edge
label, responds with the correct edge label. The experiments aim to measure the
assistance provided to human expert by our approach. We varied the list of k-best
labels from k=1 to k=5.

We focus on correctly establishing dependency relations between the chunk6

heads which we henceforth refer as inter-chunk parsing. The relations between the
tokens of a chunk (intra-chunk dependencies) are not considered for experimen-
tation. The decision is driven by the fact that the intra-chunk dependencies can
easily be predicated automatically using a finite set of rules [9]. Moreover we also
observed the high learnability of intra-chunk relations from a pilot experiment. We
found the accuracies of intra-chunk dependencies to be more than 99.00% for both
LA and UAS.

We trained a parser model on the lines of [17] with minor modifications in the
parser feature model. We employ MaltParser version-1.7 and Nivre’s Arc Eager
algorithm for all our experiments reported in this work. All the results reported
for overall parsing accuracy are evaluated using eval07.pl7. We use MTPIL [16]
dependency parsing shared task data. Among the features available in the FEATS
column of the CoNLL format data, we only consider Tense, Aspect, Modality (tam),
postpositions(vib) and chunkId while training the parser. Other columns like POS,
LEMMA, etc. are used as such.

In case of typed-dependency parsing, the accuracy can be LA, UAS or LS.
However, in our case, since we are focusing on the correct prediction of arc-labels,
the results are on LS. In terms of strategies mentioned in Section 3, a baseline
system is generated using Voting strategy with k = 1. The LS is 86.21% as shown
in Table 1.

5 Evaluation and Analysis

We wish to evaluate the assistance provided to a human validator by our approach.
However, evaluation of interactive parse correction is a complicated task due to

6A chunk is a set of adjacent words which are in dependency relation with each other, and are
connected to the rest of the words by a single incoming arc.

7http://nextens.uvt.nl/depparse-wiki/SoftwarePage/#eval07.pl
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intricate cognitive, physical and conditional factors associated with a human an-
notator. The extent of benefit will differ from annotator to annotator and thus
quantifying the gain is a challenging task. We perform two kinds of evaluation
to illustrate the effectiveness of our approach.

The first is an automatic evaluation which assumes a perfect reviewer who al-
ways identifies incorrect label and picks the correct label from the available k-best
list, if correct label is present in the list. Though this would be an ideal scenario
but gives the upper bound of the accuracies that can be reached with our approach.
The simulation of the perfect reviewer is done using the gold annotation. It is also
assumed that the decision of the correct label can be taken with the information of
local context and the whole sentence is not reviewed(which is not always true in
case of a human annotator). The second is a human evaluation where two annota-
tors are asked to review the arc labels, with and without the additional information
from our system. The gain is measured in form of time saved with the additional
information.

5.1 Automatic Evaluation

In our test set, we found∼23% (4,902 edges) of total (21,165) edges having confu-
sion score above θ and thus marked as potentially incorrect arc-labels. Table 1 ex-
hibits LS improved by perfect human reviewer(simulated via gold data), for k-best
experiments where k=1 to 5 on ∼23% potentially incorrect identified arc-labels.

k Voting(%) Probability(%) Voting+Probability(%)
1 86.21 86.35 86.28
2 90.86 90.96 90.91
3 92.13 92.24 92.18
4 92.72 92.86 92.74
5 92.97 93.16 93.04

Table 1: k-Best improved LS on inspecting ∼23% (> θ) edges.

Table 1 also depicts that as the value of k increases, the label accuracy also
increases. The best results are obtained for Probability scheme. There is a substan-
tial increment in LS moving from 1-best to 2-best in all the schemes. The amount
of gain, however, decreases with increase in k.

Ideally to achieve maximum possible LS, all the edges should be reviewed.
Table 2 confirms that if all the edges are reviewed, an LS of 93.18% to 96.57% is
achievable for k, ranging over 2 to 5. But practically this would be too costly in
terms of time and effort. In order to economize, we wish to only review the cases
which are probable enough to be incorrect. Confusion scores give a prioritized list
of edges, which dictates the cases that should be dispatched first for review. To
relate the review cost against LS gain we present a metric AGIx defined as:-

AGIx :“Accuracy Gain on Inspecting top x% edges” corresponds to the ratio
of accuracy gain from baseline by inspecting top x% of total edges, when sorted
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in decreasing order of their confusion score. The metric takes into account the
human effort that goes into validation or revision, and thus gives a better overview
of ROI(Return on Investment).

AGIx =
Accuracy after validating top x% edges−Baseline accuracy

x

From Table 1 and Table 2 we observe for k = 2 and probability scheme that
the improved LSs are 90.96% and 93.18% on inspecting 23% and 100% edges
respectively. Although the latter is greater than former by ∼ 2% but this additional
increment requires an extra inspection of additional ∼77% edges, which is eco-
nomically inviable. The fact is better captured in Table 3, where AGI23 subdues
AGI100 for different values of k using different ‘schemes’.

Further to incorporate the fact that ‘larger the candidate list more will be the
human efforts required to pick the correct label’, we also present the results of
AGIx/k, which can govern the choice of k, best suited in practice. While taking
this into account, we assume that the human efforts are inversely proportional to
k. Results for AGI23/k on improved LS, over all the experiments are reported in
Table 4.

k Voting(%) Probability(%) Voting+Probability(%)
1 86.21 86.35 86.28
2 93.19 93.18 93.26
3 95.10 95.11 95.14
4 95.94 96.06 95.97
5 96.41 96.57 96.49

Table 2: k-Best improved LS on inspecting 100% edges.

As shown in Table 3, AGI23 increases with increase in the value of k, but it is
practically inefficient to keep large value of k. Optimum choice of k is observed to
be 2 from the metric AGIx/k, as shown in Table 4, where the maximum value for
AGI23/k is ∼ 0.10 for all the ‘schemes’, which corresponds k = 2.

Voting Probability Voting+Probability
k AGI23 AGI100 AGI23 AGI100 AGI23 AGI100

1 0.0000 0.0000 0.0060 0.0014 0.0030 0.0007
2 0.2008 0.0698 0.2051 0.0697 0.2029 0.0705
3 0.2556 0.0889 0.2604 0.0890 0.2578 0.0893
4 0.2811 0.0973 0.2871 0.0985 0.2820 0.0976
5 0.2919 0.1020 0.3001 0.1036 0.2949 0.1028

Table 3: AGI23 and AGI100 for k=1 to 5
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AGI23/k AGI23/k AGI23/k
k (Voting) (Probability) (Voting+Probability)
1 0.0000 0.0060 0.0030
2 0.1004 0.1025 0.1015
3 0.0852 0.0868 0.0859
4 0.0703 0.0718 0.0705
5 0.0584 0.0600 0.0590

Table 4: AGI23/k for k=1 to 5

From the above analysis, we can establish that with 2 probable alternatives, a
perfect human oracle can increase the LS by 4.61%, inspecting top ∼ 23% of total
edges. The corresponding LA increase is 4.14%(earlier 83.39% to now 87.53%).

5.2 Human Evaluation

The human evaluation is performed with the assistance of two human experts who
have prior experience in the dependency annotation for Hindi. First, the relative
proficiency of the annotators is estimated by taking the ratio of the time taken
by each in annotating the labels for a small set of 20 sentences. The time taken
by annotator A and annotator B is 105 and 80 minutes respectively and thus the
relative annotation proficiency of annotator A to B is 105/80. The disagreement
between the two annotators is observed to be less than 3% and hence neglected for
the relative proficiency calculation.

Next, both the annotators are provided with six set of 10 parse trees each and
asked to review a specific label in each parse. The six sets are formed by pick-
ing parse tree corresponding to the nodes having maximum confusion score. Evey
parse tree, provided for review, already has the attachments and the labels anno-
tated except for the label under review. Each set has same sentence but one version
of the set also has the k-best labels corresponding to the label under review which
is alternatively provided to each reviewer. During the review, time is noted for each
annotator for each set. The first six rows of the table 5 illustrate the time taken by
each reviewer for these six sets. The value of k is taken to be 2,3 and 5 with two
sets corresponding to each k. Among these two sets once the k-best labels are pro-
vided to Annotator-A and once to Annotator-B, as shown in the second column of
table 5.

The impact of the additional information provided in form of k-best labels is
quantified in terms of the time gain. Time gain is the difference between the ex-
pected time an annotator is supposed to take and the time actually taken with k-best
labels information. The expected time is estimated using the relative proficiency
calculated earlier. For example, in the first set (first row of table 5) annotator A
is provided with the k-best label version of the set while annotator B has no such
information in her version of the set. Time taken by annotator B in the review
process is recorded to be 15 minutes. The expected time for annotator A can be
estimated with the relative proficiency which amounts to 19.69 minutes ( 15×105

80 ).
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The gain in the time is 9.69 minutes, which is the difference between the expected
time (19.69 minutes) and the actual time taken (10 minutes) by annotator A.

Annotator with info. Time Taken Expected Time
Position of the k-best labels k A B A B Gain

Top A 2 10 15 19.69 - 9.69
Top B 2 15 11 - 11.43 0.43
Top A 3 15 13 17.06 - 2.06
Top B 3 10 10 - 7.62 -2.38
Top A 5 10 9 11.81 - 1.81
Top B 5 10 8 - 7.62 -0.38

Middle A 2 7 7 9.19 - 2.19
Middle B 2 6 9 - 4.57 -4.43

Bottom A 2 9 11 14.44 - 5.44
Bottom B 2 7 7 - 5.33 -1.67

Table 5: Human evaluation with time gain due to the k-best labels. All time values
are in minutes.

The results from first six sets illustrate maximum gain for k = 2. So, for k = 2
we further chose four more sets taken respectively from the middle and bottom of
the top 23% nodes having confusion score above θ. All the results are shown in
table 5.

In human evaluation we observed cases where the gain is negative and it typ-
ically happens for annotator B. The discussion with the annotators concluded that
if the annotator is highly skilled, the extent of aid from our approach may be less
as they can directly recall the label by observing the parent and child nodes. How-
ever, they further added that the approach would certainly assist semi-proficient,
less skilled or relatively novice annotators. The argument can be supported with
the fact that annotator B is highly proficient as she took only 80 minutes in compar-
ison to annotator A who took 105 minutes to annotate the same set of parse trees
with labels.

6 Conclusion

In this paper we explored the possibility of minimizing human efforts in validation
which results in speeding up the annotation process as validation process. A major
hurdle in the process is to effectively utilize the costly human resources. We em-
ployed an entropy based confusion measure to capture uncertainty exerted by the
parser oracle and later flag the highly uncertain labels. We established that with 2
probable alternatives, a human expert can increase the LS by∼ 6% (approximately
50% error reduction), by inspecting ∼ 23% of total edges. We further asserted that
our approach can be very useful in quick treebank expansion and also minimizing
the validation effort for treebank expansion. In future we would also like to study
the effectiveness of our approach on attachment correction.
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Abstract 

Reliably coded treebanks are a goldmine for linguistics research. Answering a 

typical research question involves: (a) querying a treebank to extract sentences 

containing the feature to be investigated, (b) recognizing and keeping track of 

characteristics that determine the way in which the linguistic feature is encoded, and 

(c) using statistics to find out which (combination) of these characteristics 

determines the outcome of the linguistic feature. While sufficient tools are available 

for steps (a) and (c) in this process, step (b) has not received much attention yet. 

This paper describes how the programs “Cesax” and “CorpusStudio” can be used 

jointly to construct a “corpus research database”, a database that contains the 

sentences of interest selected in step (a), as well as user-definable pre-calculated 

characteristics for step (b). 

 

1 Introduction 

Research into variation and change of syntactic constructions often consists 
of (1) automatically finding examples of the construction in a reliably coded 
treebank, (2) adding characteristics (features) to each of the examples, (3) 
gathering the results into a database, (4) manually editing the examples in the 
database, and (5) preparing the list of examples and their features for further 
statistical work with programs like “R” or “SPSS”. The programs “Cesax” 
and “CorpusStudio” provide a windows-oriented relatively user-friendly way 
of achieving these goals [7].

1
 

CorpusStudio facilitates queries written in the Xquery language [1], taking 
xml encoded treebank texts as input.

2
 The program allows each “hit” to be 

accompanied by a user-definable number of features, and these features can 
be programmatically calculated, predicted, or given a default value. The 
results of a query project (which may involve multiple cascaded queries), 
together with the calculated features, can be saved as an xml database. The 
Cesax program is equipped with a feature to load such databases and contains 
an editor to work with the examples and their features. Cesax automatically 
adds a “Notes” field and a “Status” field to each database entry, allowing the 
user to annotate the database and to keep track of progress made. The 
database entries come with a predefined preceding and following context, as 
well as with the treebank syntax. Double-clicking an entry results in jumping 

                                                      
1 CorpusStudio and Cesax are freely available from http://erwinkomen.ruhosting.nl.  
2 The xml format CorpusStudio deals with best is a TEI-P5 derivative using embedded 

hierarchy [11]. Labelled bracketing treebank files can be imported and transformed into this 

format using Cesax. CorpusStudio also allows working directly with the Negra and the Alpino 

formats, but the database features are not (yet) available for them. Future plans include 

conversion options for these formats. 
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to the actual location in the corpus file, which helps quickly looking for the 
larger context when this is needed (it is this simple feature that is perhaps 
most valued by the users). Cesax also allows exporting the database for use in 
statistics. 

This paper provides a walk through the process described above, and it 
does so by taking the “progressive inversion” as an example. 

2 The progressive inversion 

The progressive inversion construction is a subtype of VP inversion [12]. It is 
similar to the locative inversion, except that the first constituent is a participle 
clause instead of a prepositional phrase, as for example (1a): 
 

(1) a. [IP-PPL Trending away on either side of the port] was [NP-SBJ a bold 

rocky coast, varied here and there with shingly and sandy beaches].    
                  [fayrer-1900:54] 

 b. ?[Sbj A bold rocky coast] was trending away on either side of the port. 
 

The uninverted variant of (1a) would be (1b), but the question mark indicates 
that this is not quite okay for native speakers. The linguistic question I would 
like to posit for the sake of this walk-through is: “Which features could 
determine the appearance of a progressive inversion?” 

3 Automatically finding examples 

Having defined the research question, step (1) in the process of answering it 
(see Introduction) is to define a query that automatically locates the necessary 
examples of the linguistic feature that is being targeted. Sentences that 
contain a progressive inversion need to have the following three elements: 
 

1) Subject 

2) Finite verb 

3) Participle 
 

Once sentences containing these three elements are located, the order of these 
elements will show whether an inversion construction is being used 
(participle-finite verb-subject) or some other construction (such as: subject-
finite verb-participle). The task of locating sentences and determining 
whether they contain a progressive inversion or not can be accomplished in 
CorpusStudio by using the Xquery code in (2).

3
 

What the code does is: select main clauses into variable $search (line 2), 
put the subject of the main clause into $sbj (line 5), put the finite verb of the 
main clause into $vfin (line 8), any participle of the main clause is put into 
$ptcp (line 11), determine the word order (line 14,15), return this clause if all 
the elements are there (line 18-23). The result of running the Xquery code (2) 
consists of all the sentences containing the required elements for the 

                                                      
3 The code makes use of standard Xquery functionality (for-let-where-return, if-

then-else, the function “exists()”), some built-in Xquery functions (“ru:matches”, 

“ru:relates”, “ru:back”), user-defined functions that are elsewhere in the code 

(“tb:SomeChildNo”, “tb:SomeChild”), and user-defined global variables 

(“$_matrixIP”, “$_subject”). 
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progressive inversion (subject, finite verb, participle), and these sentences are 
divided over the word orders „Ptcp-Vfin-S‟ and „Other‟. 
 

(2) Xquery code to find the inversion examples 
1.   (: Look in all main clauses :) 

2.   for $search in //eTree[ru:matches(@Label, $_matrixIP)] 

3.  

4.   (: There must be a subject and a finite verb :) 

5.   let $sbj := tb:SomeChildNo($search, $_subject, $_nosubject) 

6.   let $vfin := tb:SomeChild($search, $_finiteverb) 

7.  

8.   (: There must be a progressive or ptcp, but not an absolute :) 

9.   let $ptcp := tb:SomeChildNo($search,                         

                                'IP-PPL*|[VB]AG*|PTP*', '*ABS*') 

10.  
11.   (: Find out word order :) 
12.   let $order := if ( ($vfin << $sbj) and ($ptcp << $vfin)) 
13.                  then 'Ptcp-Vfin-S' else 'Other' 
14.  
15.   (: Check conditions: subject, V-fin, progressive, word order :) 
16.   where (  exists($sbj) 
17.            and exists($vfin) 
18.            and exists($ptcp)  ) 
19.  
20.  (: Return the main clause, subcategorize on word order :) 
21.  return ru:back($search, '', $order) 
 

While the Xquery code in (2) serves its purpose well, a few extensions are 
required that will show up later in the code. Two particular main clause types  
need to be excluded, since they skew the data: the quotations (QTP clauses) 
and main clauses with left dislocations (those with an LFD element); the 
algorithm should only look for non-empty subjects. 

4 Adding features to the results 

Step (2) in the process of addressing the linguistic question at hand (see 
Introduction) is to add characteristics, or „features‟,  to each of the examples 
we find. One way to do this in Xquery is to make a user-defined function. 
This function, which will receive the name tb:ProgrInv(), is called in line 
23 of the extended version of the main query (3). The main query is also 
extended with a test for the exclusion of left-dislocated and quotative main 
clause type in lines 5-6 and 26, while lines 10 and 27 make sure that empty 
subjects (such as traces and dislocation markers) are excluded from 
consideration. 
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(3) Add features to the progressive inversion 
1.   (: Look in all main clauses :) 

2.   for $search in //eTree[ru:matches(@Label, $_matrixIP)] 

3.  

4.   (: Some clauses need to be excluded :) 

5.   let $clsOk := not(exists($search/child::eTree 

6.                          [ru:matches(@Label, 'QTP*|*LFD*')])) 

7.  

8.   (: There must be a subject :) 

9.   let $sbj := tb:SomeChildNo($search, $_subject, $_nosubject) 

10.   let $sbjOk := not(exists($sbj[child::eLeaf/@Type = 'Star'])) 
11.  
12.   (: There must be a finite verb :) 
13.   let $vfin := tb:SomeChild($search, $_finiteverb) 
14.  
15.   (: There must be a progressive or ptcp, but not an absolute :) 
16.   let $ptcp := tb:SomeChildNo($search,  
17.                                 'IP-PPL*|VAG*|BAG*|PTP*', '*ABS*') 
18.  
19.   (: Prepare subcategorization: ptcp type  :) 
20.   let $cat := ru:cat($ptcp, 'phrase') 
21.  
22.   (: Combine features into a CSV for database creation  :) 
23.   let $db := tb:ProgrInv($sbj, $vfin, $ptcp) 
24.  
25.   (: Check conditions: sbj, Vfin, progressive and word order :) 
26.   where (  $clsOk 
27.            and exists($sbj) and $sbjOk 
28.            and exists($vfin) 
29.            and exists($ptcp) 
30.         ) 
31.  
32.  (: Return clauses found, subcategorize on the word order :) 
33.  return ru:back($search, $db, $cat) 
 

The function tb:ProgrInv() is defined in such a way, that it returns a string 
array of the features. These features are subsequently passed on to the 
CorpusStudio engine through the $db variable as an argument of the built-in 
ru:back() function, where they will be available for the next step in the 
process. 

Turning now to the feature calculation, there are two kinds of features the 
database should be equipped with: those that are going to be used for 
statistics (such as the kind of verb used, the size of the subject), and those that 
are important for visual inspection by the database user (such as the text of 
the subject, finite verb and participle). The code for the tb:ProgrInv() 
function where the features are calculated is provided in (4). 
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(4) Xquery code that calculates the feature values for one example 
1. (: -------------------------------------------------------------- 

2.    Name : tb:ProgrInv 

3.    Goal : Provide features for the progressive inversion database 

4.    History: 

5.    13-06-2013 ERK Created  

6.    ------------------------------------------------------------ :) 

7. declare function tb:ProgrInv( 

8.    $sbj as node()?, $vfin as node()?, $ptcp as node()?)as xs:string 

9. {  

10.  (: ============================================================ 
11.      Feature calculation starts here 
12.      =========================================================== :) 
13.   (: Feature #1-3: the text of the ptcp, V-finite and subject :) 
14.   let $ptcpText := replace(tb:Sentence($ptcp), ';', ' ') 
15.   let $vfinText := replace(tb:Sentence($vfin), ';', ' ') 
16.   let $sbjText := replace(tb:Sentence($sbj), ';', ' ') 
17.  
18.   (: Feature #4: word order -- Ptcp-Vfin-S, or other? :) 
19.   let $order := if ( ($vfin << $sbj) and ($ptcp << $vfin)) 
20.                 then 'Ptcp-Vfin-S' else 'Other' 
21.  
22.   (: Feature #6: the type of participle :) 
23.   let $ptcpType := if (ru:matches($ptcp/@Label,  
24.              'IP-PPL*|VAG*|BAG*|PTP*')) then 'Present' else 'Past' 
25.  
26.   (: Feature #7: the number of constituents after V-finite :) 
27.   let $postVf := count($vfin/following-sibling::eTree[ 
28.                     not(ru:matches(@Label, $_ignore_nodes_conj))]) 
29.  
30.   (: Feature #8: the number of words in the subject :) 
31.   let $sbjSize := count($sbj/descendant::eLeaf[@Type = 'Vern']) 
32.  
33.   (: Feature #9: NPtype of the subject :) 
34.   let $sbjType := ru:feature($sbj, 'NPtype') 
35.  
36.   (: Feature #10: estimate of referentiality of the subject :) 
37.   let $sbjRef := ru:RefState($sbj) 
38.  
39.   (: =========================================================== 
40.      Combine features into a CSV for database creation  
41.      =========================================================== :) 
42.   return concat($ptcpText, ';',  
43.      $vfinText, ';',      $sbjText, ';',  
44.      $order, ';',         $ptcp/@Label, ';',  
45.      $ptcpType, ';',      $postVf, ';', 
46.      $sbjSize, ';',       $sbjType, ';', 
47.      $sbjRef ) 
48. } ; 

 
As far as the features necessary for visual inspection, the function 

tb:ProgrInv() calculates the text of the participle (line 15), the text of the 
finite verb (line 18) and the text of the subject (line 21). 

Statistically important is the dependent variable $order as calculated in 
lines 24-25: this feature either has the value “Ptcp-Vfin-S”, in which case the 
example is a progressive inversion, or it has the value “Other”, in which case 
the example is not an inversion. The features numbered 5-10 in the Xquery 
code (4) are independent variables that could all possibly influence the word 
order, and they are summarized in Table 1. 
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# Feature Explanation 

5 PtcpLabel syntactic label of the participle (VAG, IP-PPL etc) 

6 PtcpTense progressive is „Present‟ or „Past‟ tense
4
 

7 PostVfNum number of sibling-constituents following Vfinite 

8 SbjSize number of words in the subject 

9 SbjType NPtype of the subject 

10 SbjRef Estimate for subject‟s referential status 

Table 1 Features that represent independent variables in a statistic analysis 

The features numbered 5-8 are „fixed‟ in the sense that they are calculated 
automatically and do not need manual correction. This is not the case for 
features 9 (SbjType) and 10 (SbjRef). These features are estimated 
automatically, but they may need manual correction.  

The “SbjType” feature, for instance, makes use of the “NPtype” feature 
that has been added to the original Treebank texts. But this feature has not 
been determined for some of the Noun Phrases, which are distinguishable by 
having the feature value “unknown”. 

The “SbjRef” feature makes use of the built-in CorpusStudio function 
“ru:RefState”, which has a success rate of approximately 85% in 
determining the referentiality of an NP. The values of this feature all need to 
be checked manually!

5
 

5 Making a database 

Next in the process of a full-fledged linguistic analysis as mentioned in the 
introduction is step (3), making a database. It is to this end that the second 
argument of the “ru:back” function has been filled with a semicolon-
separated list of feature values. When the queries have been run on the input 
texts within the CorpusStudio program, an xml file that contains all the 
important information on the result sentences is created, but this is not yet the 
database. This correct part of this result file can be transformed into an xml 
database by pressing a button within CorpusStudio, labelled “create result 
database”. 

Figure 1 provides a screenshot of the relevant part of CorpusStudio, called 
the “ConstructorEditor”. This editor contains the queries that are to be 
processed for the currently loaded corpus research project, and it defines their 
hierarchical order. The CorpusStudio manual describes the process involved 
in generating a database from the results of a query line in more detail [5]. 

                                                      
4 This feature is unnecessary for the current example, where we only look at present-tense 

progressive inversion. 
5 The Xquery functions starting with the “ru:” prefix are all listed in the CorpusStudio 

manual. These functions have been hard-coded in CorpusStudio and approach the xml 

documents through the Microsoft xml library; the program makes use of the Saxon Xquery dll, 

which, in turn, allows host-programs to provide additional Xquery functions through a 

namespace declaration that points to the executable itself. The ru:RefState function is 

described more fully in [8]. 
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Figure 1 Creating an xml database in the Constructor Editor of CorpusStudio 

6 Editing examples in the database 

Steps (1) to (3) involved in working through a linguistics example, as 
described in the introduction, have been taken, and everything is ready for 
step (4), manually editing and inspecting the database. Loading the database 
in Cesax results in the following display. 

 

 
Figure 2 Loading an xml database in Cesax 
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The Cesax program has originally been created to facilitate coreference 
resolution and referential state processing, but it has been extended with 
several more functions, one of which is the editing of databases. Once a 
database has been loaded, editing options become available on the 
“CorpusResults” tab page [6]. 
 

1) Delete. Individual records can be deleted, but it is also possible to keep 

the records that are available, and indicate their status as “Ignore”. 

2) Add. If important sentences have not been captured by the database 

construction query, it is better to adapt the query in such a way that all 

sentences are added.  

3) Editing. Feature values can be edited in the textboxes available for each 

record. 

4) Notes. The “Notes” window allows adding remarks to individual records 

5) Status. The status of each record can be set in order to keep track of 

progress. 

6) Bulk-changes. Two different methods are provided to provide a search 

and replace feature. The most extensive option uses Xpath to find its way 

through the results in the database xml file, but it uses a user-friendly 

interface. 
 

The database results can be re-ordered on the basis of any of the columns, 
and one column can be filled with one of the user-supplied features. It is also 
possible to filter the database without actually changing its content. These 
kinds of features make life easier for the annotator, especially when databases 
are large (the databases with results I have encountered typically exceed 
10.000 sentences). 

The syntax and local context of each record in the database are 
immediately visible in the “CorpusResults” tab page, but it may, at times, be 
necessary to look at the sentence that has been found in the larger context of 
the original text. Cesax allows this: double clicking the entry in the results list 
opens the corpus file on the corresponding place and shows it in the “Editor” 
tab page. Should it be necessary to take a different look at the syntax of this 
particular example, then clicking the “Tree” tab page results in displaying the 
selected sentence in a syntactic tree. 

7 Preparation for statistics 

Step (5) in the process described in the introduction involved preparing the 
database results for statistical processing. Cesax contains several commands 
to suit the needs of the user. Preparation for SPSS processing, for instance, 
involves the following steps: 
 

1) Construct a table with the „original‟ values of the features; the values as 

they are visible in the CorpusResults tab page; 
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2) Construct a tab-separated text file where the „original‟ feature values are 

replaced by numerical values (an additional table with the „index‟ to 

these values is supplied separately); 

3) Construct a separate .sps file (an SPSS „syntax‟ file). 

 

Work with SPSS can be conducted by transferring the second (numerical 
value) table to SPSS, and processing the .sps file with the feature values. An 
SPSS user will, in addition to this, also need to specify which features are to 
be excluded from statistic, which are the independent variables, and which 
one is the dependent variable. 

Work with memory-based language programs like „TiMBL‟ is also 
supported [4]. Cesax allows preparing a training and test file with the 
necessary features for further processing by TiMBL. 

Since the purpose of this paper is to show how data gained through corpus 
searches can be prepared for statistical processing, no attempt will be made to 
figure out which of the independent variables play a role in determining 
whether progressive inversion occurs or not. 

8 Querying a database 

Once a database has been manually edited, as described in section 6, a user 
will probably not want to go back to adjusting the original corpus query 
(section 3) in order to make a new version of a database (e.g. one that 
contains a selected subset, or one with adjusted feature values). This may, 
due to the cyclic process of research in general, not always be circumvented, 
but the CorpusStudio-Cesax combination does allow for one way out. If a 
user wants to make an adapted database that (a) uses a subset of the features 
available in the original one, or (b) that has records filtered out by additional 
criteria, or (c) that uses additional features that can be calculated on the basis 
of the existing ones, then this can be achieved by writing a query with the 
database as input. The CorpusStudio manual contains information on how to 
do this. 

Returning now to the linguistic task that has been undertaken as an 
example, I would not like to withhold the outcome to the interested reader. 
The manually inspected corpus database yields a total of twelve examples of 
the progressive inversion (against a total of 5-6 million words), and the first 
clear one is found in early Modern English (1500-1700). 
 

(5) a. and vpon the ryght hande goynge from Rama to Jherusalem, about 

.xx. myle from Rama, is the castell of Emaus.  [chaplain-e1-p2:289] 
 

The example in (5) has the finite verb is preceded by a participle clause that 
is headed by the present participle going. It clearly serves to introduce a new 
„participant‟ in the narrative, namely the castle of „Emaus‟. 

9 Discussion 

This paper has shown a new, windows-based approach to research into 
variation and change of syntactic constructions. The new approach is 
centered around the programs CorpusStudio and Cesax, and makes heavy use 
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of xml, xpath and xquery, which have become standard public-domain 
conventions.  

Just as CorpusSearch [9], tgrep [10], TigerSearch [3] and similar query 
programs do, CorpusStudio allows for the definition of queries that select 
sentences from syntactically parsed texts on the basis of user-definable 
criteria. Just as the Alpino project [2, 13] does, CorpusStudio makes use of 
the Xquery language with all its advantages in terms of user-extensibility, 
recursive functions and independent W3C development. Different from its 
competitors, however, CorpusStudio allows for combining multiple queries 
into a corpus research project that is kept in one place, which facilitates 
experiment replicability. Essential for the creation of a database with 
examples is CorpusStudio‟s capability to provide the examples that are found 
with pre-calculated feature values. This capability surpasses,  for instance, 
CorpusSearch‟s “coding” functionality; first in the area of user-friendliness, 
and second in terms of complexity. Pre-calculating feature values in 
CorpusStudio is “advanced”, since it can make use of the Xquery 
functionality of user-definable functions, and it can make use of the Xquery 
functions that have been hard-wired into CorpusStudio. 

Since databases that have been made with CorpusStudio contain features 
that can have text values, editing such databases becomes a doable task. 
When database entries are also supplied with notes, the data become a 
valuable treasure, that allow back-tracking annotation choices. The facility to 
jump to the location in the text associated with a database entry allows for 
speedy inspection of the larger context, and it opens the way to a tree-view of 
the selected sentence‟s syntax. 

Cesax allows simple transformation of a database into a format that can be 
used by statistical programs such as “R” and “SPSS”, as well as by memory-
based learning programs such as “TiMBL”. 

I suggest that future developments of Corpus databases based on 
treebanks involve web interfaces instead of dedicated programs (which tend 
to be OS-dependant), but I leave that challenge to the experts. 
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Abstract

The aim of this paper is twofold. We focus, on the one hand, on the task of
dynamically annotating English compound nouns, and on the other hand we
propose disambiguation methods and techniques which facilitate the anno-
tation task. These annotations are very rich linguistically, since apart from
syntax they also incorporate semantics, which does not only ensure that the
treebank is guaranteed to be a truly sharable, re-usable and multi-functional
linguistic resource, but also calls for the necessity of a better disambiguation
of the internal (syntactic) structure of larger units of words, such as com-
pound units, since this has an impact on the representation of their meaning,
which is of utmost interest if the linguistic annotation of a given corpus is to
be further understood as the practice of adding interpretative linguistic infor-
mation of the highest quality in order to give “added value” to the corpus.

1 Introduction

Disambiguating compounds is a challenging task for several reasons. The first
challenge lies in the fact that the formation of compounds is highly productive.
This is not only true for English, but for most languages in which compounds are
found. Secondly, both the annotation and the disambiguation of compounds is par-
ticularly tricky in English, for there are no syntactic and hardly any morphological
cues indicating the relation between the nouns: as has very often to date been pro-
posed in the relevant literature, the nouns are connected by an implicit semantic
relation. Being a true Natural Language Processing task, the third difficulty in
compound noun annotation and disambiguation lies in ambiguity. One could say
that compound nouns are double ambiguous: a compound may have more than one
possible implicit relation. Therefore, the interpretation of the compound may also
depend on context and pragmatic factors. The last main challenge lies in the fact
that, even though finite sets of possible relations have been proposed (by among
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others [12], [25]), there is no agreement on the number and nature of semantic re-
lations that may be found in compounds. Since [6], it is generally assumed that
theoretically, the number of possible semantic relations is infinite.

The annotation and disambiguation of the English compound units we focus
on here are part of the English DeepBank, an on-going project whose aim is to
produce rich syntactic and semantic annotations for the 25 Wall Street Journal
(WSJ) sections included in the Penn Treebank (PTB: [14]). The annotations are
for the most part produced by manual disambiguation of parses licensed by the
English Resource Grammar (ERG: [7]), which is a hand-written, broad-coverage
grammar for English in the framework of Head-driven Phrase Structure Grammar
(HPSG: [18]).

The aim of the DeepBank project [8], has been to overcome some of the lim-
itations and shortcomings which are inherent in manual corpus annotation efforts,
such as the German Negra/Tiger Treebank ([1]), the Prague Dependency Tree-
bank ([9]), and the TüBa-D/Z.1 All of these have stimulated research in various
sub-fields of computational linguistics where corpus-based empirical methods are
used, but at a high cost of development and with limits on the level of detail in the
syntactic and semantic annotations that can be consistently sustained. The central
difference in the DeepBank approach is to adopt the dynamic treebanking method-
ology of Redwoods [17], which uses a grammar to produce full candidate analyses,
and has human annotators disambiguate to identify and record the correct analyses,
with the disambiguation choices recorded at the granularity of constituent words
and phrases. This localized disambiguation enables the treebank annotations to
be repeatedly refined by making corrections and improvements to the grammar,
with the changes then projected throughout the treebank by reparsing the corpus
and re-applying the disambiguation choices, with a relatively small number of new
disambiguation choices left for manual disambiguation.

2 Annotation of Compound Units

The annotation of DeepBank as a whole, and thus also of the compounds in this
text collection, is organised into iterations of parsing, treebanking, error analysis,
and gramma/treebank update cycles.

2.1 Parsing

Each section of the WSJ corpus is first parsed with the PET unification-based parser
[3] using the ERG, with lexical entries for unknown words added on the fly based
on a conventional part-of-speech tagger, TNT [2]. Analyses are ranked using a
maximum-entropy model built using the TADM [13] package, originally trained on
out-of-domain treebanked data, and later improved in accuracy for this task by in-
cluding a portion of the DeepBank itself for training data. A maximum of 500

1http://www.sfs.nphil.uni-tuebingen.de/en_tuebadz.shtml
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Figure 1: Treebanking Interface with an example sentence, candidate readings, discriminants and
the MRS. The top row of the interface is occupied by a list of functional buttons, followed by a line
indicating the sentence ID, number of remaining readings, number of eliminated readings, annota-
tor confidence level, and the original PTB bracket annotation. The left part displays the candidate
readings, and their corresponding IDs (ranked by the disambiguation model). The right part lists all
the discriminants among the remaining readings. The lower part shows the MRS of one candicate
reading.

highest-ranking analyses are recorded for each sentence, with this limit motivated
both by practical constraints on data storage costs for each parse forest and by the
processing capacity of the [incr tsdb()] treebanking tool [16]. The existing
parse-ranking model has proven to be accurate enough to ensure that the desired
analysis is almost always in these top 500 readings if it is licensed by the gram-
mar at all. For each analysis in each parse forest, we record the exact derivation
tree, which identifies the specific lexical entries and the lexical and syntactic rules
applied to license that analysis, comprising a complete ‘recipe’ sufficient to recon-
struct the full feature structure given the relevant version of the grammar. This
approach enables relatively efficient storage of each parse forest without any loss
of detail.

2.2 Treebanking

For each sentence of the corpus, the parsing results are then manually disam-
biguated by the human annotators, using the [incr tsdb()] treebanking tool
which presents the annotator with a set of binary decisions, called discriminants, on
the inclusion or exclusion of candidate lexical or phrasal elements for the desired
analysis. (cf., Figure 1).

This discriminant-based approach of [5] enables rapid reduction of the parse
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forest to either the single desired analysis, or to rejection of the whole forest for
sentences where the grammar has failed to propose a viable analysis.2 On average,
given n candidate trees, log2 n decisions are needed in order to fully disambiguate
the parse forest for a sentence. Given that we set a limit of 500 candidate readings
per sentence, full disambiguation of a newly parsed sentence averages no more
than 9 decisions, which enables a careful annotator to sustain a treebanking rate of
30 to 50 sentences per hour on the first pass through the corpus.

2.3 Error analysis

During the course of this annotation effort, several annotators have been trained
and assigned to carry out the initial treebanking of portions of the WSJ corpus,
with most sections singly annotated. On successive passes through the treebank,
two types of errors are identified and dealt with: mistakes or inconsistencies of
annotation, and shortcomings of the grammar such that the desired analysis for a
given sentence was not yet available in the parse forest. Errors in annotation in-
clude mistakes in constituent boundaries, in lexical choice such as verb valency or
even basic part of speech, and in phrasal structures such as the level of attachment
of modifiers or the grouping of conjuncts in a coordinated phrase. Our calculation
of the inter-annotator agreeemnt using the Cohen’s KAPPA[4] on the constituents of
the derivation trees after the initial round of treebanking shows a moderate agree-
ment level at κ = 0.6. Such disagreeements are identified for correction both by
systematic review of the recorded ‘correct’ trees section by section, and by search-
ing through the treebank for specific identifiers of constructions or lexical entries
known to be relatively rare in the WSJ, such as the rules admitting questions or
imperative clauses.

Shortcomings of the grammar are identified by examining sentences for which
annotators did not record a correct analysis, either because no analysis was as-
signed, or because all of the top 500 candidate analyses were flawed. Some of
the sources of error emerge quickly from even cursory analysis, such as the ini-
tial absence of a correct treatment in the ERG for measure phrases used as verbal
modifiers, which are frequent in the WSJ corpus, as in the index rose 20 points or
the market fell 14%. Other types of errors required more detailed analysis, such as
missing lexical entries for some nouns taking verbal complements, as in the news
that Smith was hired or the temptation to spend the money. These fine-grained lexi-
cal entries are not correctly predicted on the fly using the part-of-speech tagger, and
hence must be added to the 35,000-entry manually supplied lexicon in the ERG.

2For some sentences, an annotator may be unsure about the correctness of the best available
analysis, in which case the analysis can still be recorded in the treebank, but with a lower ‘confidence’
score assigned, so the annotation can be reviewed in a later cycle of updates.
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2.4 Grammar & Treebank Update

While grammar development proceeds independent of the initial treebank anno-
tation process, we have periodically incorporated improvements to the grammar
into the treebank annotation cycle. When a grammar update is incorporated, the
treebank also gets updated accordingly by (i) parsing anew all of the sentences in
the corpus using the new grammar; (ii) re-applying the recorded annotation deci-
sions; and (iii) annotating those sentences which are not fully disambiguated after
step ii, either because new ambiguity was introduced by the grammar changes, or
because a sentence which previously failed to parse now does. The extra manual
annotation effort in treebank update is relatively small when compared to the first
round of annotation, typically requiring one or two additional decisions for some
5–10% of the previously recorded correct analyses, and new annotation for previ-
ously rejected items, which were another 15% of the total in the second round, and
much less in successive rounds. Hence these later rounds of updating the treebank
proceed more quickly than the initial round of annotation.

Correcting errors of both classes based on analysis of the first pass through
DeepBank annotation has resulted in a significant improvement in coverage and
accuracy for the ERG over the WSJ corpus. Raw coverage has risen by some 10%
from the first pass and the ‘survival’ rate of successfully treebanked sentences has
risen even more dramatically to more than 80% of all sentences in the first 16
sections of the WSJ that have now gone through two rounds of grammar/treebank
updates.

3 Examples of Compound Units in DeepBank

Being a collection of financial articles, the WSJ may not represent the English
language in its most typical daily usage, but it is not in short of interesting linguistic
phenomena. Having an average sentence length of over 20 words, loaded with
tons of jargons in the financial domain, the corpus puts many natural language
processing components (POS taggers, chunkers, NE recognizers, parsers) to the
ultimate test. On the other hand, rich phenomena included in the corpus make
it also interesting to test deep linguistic processing techniques. One particularly
frequent and puzzling phenomenon in the corpus is the vast amount of compound
nouns whose syntactic and semantic analyses are potentially ambiguous. Being
symbolic systems, deep grammars like the ERG will not always disambiguate all
the possibilities. For example, for the compound “luxury auto maker”, the ERG
will assign both left-branching and right branching analyses (as shown in Figure 2),
using the very unrestricted compounding rule NOUN-N-CMPND.

In some cases such branching decisions seem arbitrary and are defensible either
way, but there are instances where a distinction should be made clearly. Consider
the following two sentences from the WSJ section 3 of the PTB:

• A form of asbestos once used to make Kent cigarette filters has caused a
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NOUN-N-CMPND

NOUN-N-CMPND

luxury auto

maker

NOUN-N-CMPND

luxury NOUN-N-CMPND

auto maker

Figure 2: Two alternative analyses from the ERG

NOUN-N-CMPND

NOUN-N-CMPND

Kent cigarette

filters

NOUN-N-CMPND

Micronite NOUN-N-CMPND

cigarette filters

Figure 3: Similar noun compounds with different branching preferences

high percentage of cancer deaths among a group of workers exposed to it
more than 30 years ago, researchers reported.

• Lorillard Inc., the unit of New York-based Loews Corp. that makes Kent
cigarettes , stopped using crocidolite in its Micronite cigarette filters in
1956.

In some cases, such branching preferences can be easily accounted for, if part
of the compound is a multiword named entity, as in “Fortune 500 executives” and
“auto maker Mazda Motor Corp.”, where the words from the named entity should
be grouped together.

More challenging cases come from the financial domain specific terminologies.
While the majority of such terminologies conform to the largely right-branching
structures of English, there are cases where left-branching structures may not be
excluded in the analysis of the given compounds.

• Nevertheless , said Brenda Malizia Negus, editor of Money Fund Report ,
yields “ may blip up again before they blip down ” because of recent rises in
short-term interest rates.

• Newsweek said it will introduce the Circulation Credit Plan , which awards
space credits to advertisers on “renewal advertising.”

While varying branching preference can hopefully be recovered partially by a
statistical disambiguation model trained on the increasing number of manually dis-
ambiguated compounds in the treebanking project, there are also problems which
need special treatment in the design of features for the disambiguation model. For
instance, in a compound construction containing a deverbal noun, the predicate-
argument relation from the deverbal noun to the other noun in the compound is
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HCONS

{
. . .

}



Figure 4: Missing semantic relation within a compound

left underspecified by the grammar, for the relation can be either an argument or a
modifier. Consider the compound “stock purchase and sales”. A valid syntactic
analysis (as shown in Figure 4) leaves an unbound semantic relation.

Ideally, in this example the semantic variables i1 and i2 should be both bound
to x1. But resolving such an ambiguity within the grammar involves the risk of
wrongly assigning the semantic roles in cases where, say, the first noun is serving
as modifier instead of argument of the deverbal noun. The current disambiguation
model does not recover such a kind of underspecified semantic information, as the
model is trained exclusively on disambiguated treebanked data with underspecified
semantics unchanged. Furthermore, such disambiguation requires a big number of
bi-lexical preferences, in order, for instance, for the distinction between arguments
and modifiers to be drawn clearly.

4 Disambiguation of Compound Nouns

Due to the lack of constraints on compound nouns in the ERG, the grammar tends
to generate all possible internal structures to these NPs, leading to an combinato-
rial explosion to the number of candidate trees. Working with the DeepBank, we
delay the decision on these internal structures of compounds until the other parts
of the syntactic structures are disambiguated. Then the annotators go on to pick
the preferred branching structures in line with the examples shown in the previous
section.

The human annotators have been assisted with several disambiguation models

103



that help to rank the readings and treebanking decisions. The annotators have been
warned to make use of this help with cautiousness. The inter-annotator agreements
have been checked periodically to ensure the quality of the annotation.

In need to further facilitate and boost the performance of the parse disambigua-
tion model used for the annotation of compounds in the DeepBank, we have also
adopted the following strategies:

1. Almost in a preprocessing component manner, we have relied on the de-
tection and evaluation methods for the automatic acquisition of Multiword
Expressions (MWEs), thus also of compound nouns, for robust grammar en-
gineering proposed in [24]. That is, we have first detected compound noun
candidates for English on the basis of the distinct statistical properties of
their component words, regardless of their type, comparing 3 statistical mea-
sures: mutual information (MI), χ2 and permutation entropy (PE). Then we
have validated the quality of such candidates against various corpora, in-
vestigating simultaneously the influence of the size and quality of different
corpora, using the BNC and the Web search engines Google and Yahoo. At
the end of this process, the eligible compound noun candidates have been in-
troduced to the ERG-based parsing and treebanking procedure with the aim
to also get validated by the human annotators before ultimately being used
for the re-training of the parse disambiguation model.

2. That is, in a novel manner, we have incorporated the fine-grained treebanking
decisions made by the human annotators as discriminative features for the
automatic parse disambiguation of the compounds in the DeepBank. The
advantage of such an approach and everyday treebanking practice is that use
of human judgements is made. [11] show that annotators tend to start with
the decisions with the most certainty, and delay the “hard” decisions as much
as possible. As the decision process goes, many of the “hard” discriminants
pertaining to compounds have received an inferred value from the certain
decisions. This greedy approach has been shown to help guarantee high
inter-annotator agreement. Concerning the statistical parse selection model,
the discriminative nature of such treebanking decisions suggests that they are
highly effective features, and if properly used, they contribute to an efficient
disambiguation model.

3. Use the annotated sections of the WSJ to retrain the parse disambiguation
model and improve the syntactic bracketing prediction accuracy. The parse
disambiguation model used here is that proposed in [20] and [19] which has
been developed for use with so-called dynamic treebanking environments,
like the Redwoods treebank [17]. In such a model, features such as local con-
figurations (i.e., local sub-trees), grandparents, n-grams, etc., are extracted
from all trees and used to build and (re-)train the model. Thus, as part of this
procedure for our purposes, the eligible compound noun candidates have
been introduced to the ERG-based parsing and treebanking procedure and
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they have been validated through annotation by the human annotators before
ultimately being used for the re-training of the inherent to the parser disam-
biguation model. The ultimate aim here has been to incorporate the fine-
grained treebanking decisions made by the human annotators as discrimina-
tive features for the automatic parse disambiguation of the compounds in the
DeepBank.

4. Use external large corpora to gather bi-lexical preference information as aux-
iliary features for the maximum-entropy based parse disambiguation model
mentioned above. This is similar to the approach taken in [10] and [23],
where pointwise mutual information association scores are used in order to
measure the strength of selectional restrictions and their contribution to parse
disambiguation. Because the association scores are estimated on the basis of
a large corpus that is parsed by a parser and is aimed at getting improved
through parse disambiguations, this technique may be described as a partic-
ular instance of self-training, which has been shown in the literature to serve
as a successful variant of self-learning for parsing, as well. The idea that se-
lection restrictions may be useful for parsing is not new. In our case at hand,
i.e., the case of the disambiguation of compound nouns that we are interested
in here, our approach and method is very much fine-tuned and targeted to the
disambiguation of argument vs. modifier relations in the compound nouns.

5 Discussion and Outlook

In the work of [21], efforts to enrich the noun phrase annotations for the Penn
Treebank have been reported. The extra binarization of the originally flat NP struc-
tures provides more information for the investigation of the internal structures of
the compound nouns, although the enriched annotation adds very little information
to the labels, and the semantic relations within the NPs are not explicitly revealed.
More specifically, the work of [21] leaves the right-branching structures (which
are the predominant cases for English) untouched, and just inserts labelled brack-
ets around left-branching structures. Two types of new labels were assigned to
these new internal nodes of the PTB NPs: NML or JJP, depending on whether each
time the head of the NP is a noun or an adjective. Hence, in this analysis, for
instance, the NP “Air Force contract” would receive the following structure:

NP

NML

Air/NNP Force/NNP

contract/NN

As a consequence of such an annotation and treatment, Air Force as a unit is serving
the function of the nominal modifier of contract.
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Such enriched annotation enables one to investigate the bracketing preferences
within the nominal phrases which was not available with the original PTB. By
adapting the existing parsing models to use the enriched annotation, one can expect
a fine-grained parsing result. Furthermore, this allows one to explore the treatment
of NP in linguistically deep frameworks (see [22] for an example of such study in
the framework of Combinatory Categorial Grammar (CCG)).

In DeepBank, the aim has always been to develop linguistic analyses indepen-
dent from the PTB annotations. In the same spirit, we have decided not to incorpo-
rate the NP bracketing dataset from [21] directly during the annotation phase. On
the other hand, as pointed out by the original PTB developers ([15]), asking anno-
tators to directly annotate the internal structure of the base-NP significantly slows
down the annotation process. We have made a similar observation in the Deep-
Bank project. To help improve the annotation speed while maintaining quality, we
have periodically updated the statistical models that re-rank the candidate trees and
discriminants (binary decisions to made by human annotators) so that the manual
decision making procedure has been made easier.

As an immediate next step in the research carried out for the dynamic anno-
tation and disambiguation of English compound nouns in the DeepBank, we will
compare the bracketing agreement with the NP dataset from [21].
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Abstract
In the paper we present a method of partial disambiguation of an LFG parse-
bank produced by the Polish LFG grammar POLFIE. The method is based
on the grammatical information retrieved from Składnica treebank consisting
of the same set of sentences. As a result we obtain a parsebank consisting
of significantly smaller forests of LFG structures that can be fully disam-
biguated by a human annotator with much less time and effort then in the
case of entirely manual disambiguation.

1 Introduction

In this paper, we report on preliminary results concerning a method of
semi-automatic creation of an LFG treebank of Polish based on an already exist-
ing resource. The aim of our work is to prune LFG forests obtained by automatic
parsing with no means of stochastic disambiguation. The idea is to restrict them
to trees consistent with already existent constituency annotation based on another
grammar formalism for the parsed sentences. In this way, we perform an auto-
matic, partial disambiguation which can be later completed by a human annotator.
After the automatic stage of pruning, the annotators will be presented with much
smaller parse forests, which will allow for a significant decrease of amount of time
and human effort needed to obtain an LFG treebank for Polish.

Our approach is therefore a convenient alternative to more expensive (in terms
of time and human effort) ways of creating a treebank, involving fully manual syn-
tactic annotation (e.g., the Prague Dependency Treebank, Hajič et al. 2000) or dis-
ambiguation of the entire output of a parser (as in the Polish constituency treebank,
Woliński et al. 2011) and therefore requiring more work from the annotators.

The strategy we use, i.e., making extensive use of an existing resource in order
to obtain a new one, is in line with the “parasitic” approach adopted by the authors
of POLFIE – the Polish LFG grammar (Patejuk and Przepiórkowski, 2012) – who
used a Polish DCG1 grammar as a base for their resource. Such an approach seems

1Definite Clause Grammar
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promising especially in the case of languages with less developed NLP resources,
such as Polish, since it allows for obtaining results in a relatively short time. As
a side effect of this strategy we obtain two treebanks based on the same linguistic
content which may allow future development of hybrid approaches to parsing.

This article describes our method and reports on its current results. Since both
DCG treebank and POLFIE are still under development, the presented results are
partial in a sense that first, the final version of the partially disambiguated LFG
parsebank will consist of more sentences as the constituency treebank used as
a starting point is about to grow, and second, the LFG grammar will be extended
and, possibly, modified.

The paper is organised as follows. In section 2 the used resources, i.e., the
constituency treebank of Polish sentences and the Polish LFG grammar, are briefly
presented. Section 3 describes our method. Section 4 presents the current state of
work.

2 Available resources

The Polish constituency treebank used in this work is Składnica2 (Woliński et al.,
2011). The treebank is being developed in a semi-automatic manner. Sets of candi-
date parse trees are generated by a parser and subsequently one tree is selected by
human annotators. The tool used for parsing is Świgra (Woliński, 2004) – a parser
for Polish based on a DCG-style grammar GFJP (Świdziński, 1992). The resource
consists of about 8000 trees but is still under development. There is an ongoing
work aiming at extending the treebank with more sentences and correcting the ex-
isting structures. Figure 1 shows an example tree from Składnica.

painter grab he strongly by shoulder

“The painter grabbed him strongly by the shoulder.”

Figure 1: An example constituency tree from Składnica treebank. The highlighted
edges lead to nodes marked as head elements.

2http://zil.ipipan.waw.pl/Składnica
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Another resource is POLFIE3 – a manually developed wide-coverage LFG4

grammar for Polish (Patejuk and Przepiórkowski, 2012). Figure 2 shows an LFG
representation of the sentence from Figure 1. The Polish LFG grammar was used
to create a parsebank consisting of LFG structure forests for the sentences con-
tained in Składnica. The next step is to transform the parsebank into a treebank by
selecting the correct analysis from the forest.
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Figure 2: An example of LFG analysis: c-structure (top) and f-structure (bottom).

3 Method

The idea of our approach is to compare the hierarchy of predicates in LFG f-
structures with the marking of heads of constituents in Składnica’s trees. One
may consider taking into account c-structures instead on the LFG side, given the
fact that they are constituency trees and, as such, should be easier to compare with

3http://zil.ipipan.waw.pl/LFG
4Lexical Functional Grammar (Bresnan 2001, Dalrymple 2001)
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other constituency trees. However, we found some important reasons for focusing
on the functional level of sentence description.

First of all, it is a common view among LFG grammarians that the c-structure
plays a secondary role in sentence analysis. It can be seen as an auxiliary structure
for constructing the functional one. Another reason for the f-structure being more
interesting is that it is expected to be much more language-independent, while
the c-structure must be much more language-specific in order to deal, e.g., with
different word order. Further, the f-structure is more suited to augmenting with
semantic information, which makes it a better representation of a sentence in NLP
applications dealing with semantic analysis.

Last but not least, focusing on the f-structure is a better decision from the tech-
nical point of view, as the grammar we are working with will be subject to changes
in the course of its ongoing development. Although we cannot predict its future
modifications, we expect that they will affect the constituency structure more than
the functional one.

The general idea of our method is quite straightforward. We use head element
marking present is Składnica’s annotation to retrieve information about predicate
hierarchy the LFG f-structure should be consistent with. By predicate hierarchy
we mean the structure of functional relations between f-structures corresponding
to individual predicates: which predicate’s f-structure is the value of an attribute
of another. The procedure is recursive. In each visited node of a tree, the proce-
dure goes down the path to the leaf corresponding to its subtree’s head element.
The base form in that leaf will be the predicate of an f-structure. The subtrees at-
tached to the path by non-head branches correspond to nested f-structures which
are values of attributes of the current one, their head elements’ base forms being
the predicates. As an example, from the constituency tree shown in Figure 3, the
following information would be extracted:

• the f-structure for ‘STRACIĆ’ (lose) has as values of its attributes the f-
structures for ‘MILION’ (million) and ‘OSZCZĘDNOŚĆ’ (saving)

• the f-structure for ‘MILION’ has as the value of its attribute the f-structure
for ‘CZŁOWIEK’ (man)

• the f-structure for ‘OSZCZĘDNOŚĆ’ has as the value of its attribute the f-
structure for ‘ŻYCIE’ (life)

• the f-structure for ‘ŻYCIE’ has as the value of its attribute the f-structure for
‘CAŁY’ (whole)

This information can be seen as a set of constraints that must be fulfilled by an
f-structure in order to be consistent with the given sentence’s constituency tree.

The basic method described above does not take into account what kind of
attribute a nested f-structure is the value of. It does not distinguish between f-
structures with analogous predicate hierarchy, but differing in specific functional
relations. For instance, continuing the previous example, the f-structure for ‘MIL-
LION’ may be, among others, SUBJ, OBJ or ADJUNCT (optional modifier) of
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million man lose saving whole life

Figure 3: Składnica tree for sentence Millions of people lost whole life’s savings.

the f-structure for ‘LOSE’. All those cases are consistent with the information about
hierarchy between ‘MILLION’ and ‘LOSE’ extracted from the tree.

Conveniently, Składnica contains some valence information allowing for mak-
ing the extracted constraints more specific. The valence information is contained
mainly at the level of the zdanie (sentence) node. Each of its children is labeled
either ff (finite phrase, the sentence’s main verb), fw (argument phrase) or fl (mod-
ifier phrase). Each fw node contains information about the valence position it fills.
Valence annotation is also present in the case of participle verb forms and some
nouns with argument requirements. This information is however oriented on sur-
face syntax and therefore not isomorphic with LFG’s grammatical functions.

Using this information and a mapping from valence positions to LFG attribute
names, we can make the constraints more specific. In addition to the requirements
on the predicates of each f-structure’s attributes, we can state what should be the
grammatical functions of those attributes. For the predicates for which the valence
information is present, we split the attribute predicates in the constraint into two
groups. One consists of the predicates extracted from argument phrases (argument
predicates), and the other contains the rest (modifier predicates). When testing an
f-structure for consistency with such a constraint, we check whether:

1. all argument predicates are matched in the f-structure, i.e., it has attributes
with names and predicates specified in the constraint,

2. it has no other argument attributes5,

3. its other attributes’ predicates match the modifier predicates specified in the
constraint.

5i.e., attributes that have a grammatical function, such as SUBJ, OBJ or OBL
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Table 1 contains the mapping from valence positions marked in Składnica’s
argument phrase nodes to LFG attribute names. A valence position can be mapped
to more than one LFG attribute. This is the case when, depending on a partic-
ular sentence, a phrase of the same syntactic type may appear as values of dif-
ferent attributes. Since the exact type of corresponding LFG attribute cannot be
deduced directly from valence position marking, we assume that an f-structure sat-
isfies a constraint if for each of its argument predicates, one of the attribute names
specified for it is properly matched.

valence position LFG attribute names

syntactic subject SUBJ
nominal noun phrase XCOMP-PRED, OBL-STR
genitive noun phrase OBJ,OBL-GEN
dative noun phrase OBJ, OBJ-TH
accusative noun phrase OBJ, OBL-STR
instrumental noun phrase OBL-INST, XCOMP-PRED, OBJ
nominal adjectival phrase XCOMP-PRED
instrumental adjectival phrase XCOMP-PRED
adverbial phrase OBL (or modifier)
sentential phrase SUBJ, COMP
infinitival phrase SUBJ, XCOMP
prepositional noun phrase OBL, OBL2, OBL3, OBL-AG
prepositional adjectival phrase XCOMP-PRED

Table 1: Mapping from Składnica valence positions to POLFIE attribute names.

For example, in the tree from Figure 3, the only nodes with valence information
are the children of the zdanie node. The marking is as follows: “Miliony ludzi”
(millions of people) is marked as the syntactic subject and “oszczędności całego
życia” (whole life’s savings) as an accusative noun phrase. Thus, the constraint
for ‘STRACIĆ’ will now state that its f-structure has two argument attributes: the
f-structure for ‘MILION’ being a SUBJ and the f-structure for ‘SAVING’ as either
OBJ or OBL-STR; and has no modifier attributes.

Since GFJP and POLFIE are not just two alternative formalisms for the same
linguistic theory but rather two formalisms for two significantly different
approaches to Polish syntax, a number of special cases needed to be taken into
account to cover these differences. Some of such cases, for which the approach
outlined above would not work directly, are listed below.

Subject. The first type of major difference are the cases in which there is no sub-
ject on the surface of a sentence. Such a situation is quite common in Polish, where
an explicit subject is not required to be present in a sentence (so called “pro-drop”).
For such sentences, there is simply no phrase marked as syntactic subject in their
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constituency trees in Składnica. On the other hand, a subject is generally required
in an LFG f-structure; in the case of no subject on the surface, a special f-structure
with PRED ‘PRO’ takes its place to represent an implicit subject. We therefore
had to take this fact into account and add a PRED ‘PRO’ subject to constraints for
main verbs with no surface subject.

The handling of subject is also different in the case of participle verb forms. For
example, in the sentence “Łukasz zatrzymał przejeżdżającą taksówkę.” (Łukasz
stopped the passing cab.; structures shown in Figure 4), Składnica’s constituency
representation contains no information about the subject of the verb form passing.
On the other hand, in the corresponding LFG structure, the subject of ‘PASS’ is
present and is identical with the object of ‘STOP’, which is ‘CAB’. Since there
is no direct way of identifying a participle verb’s subject in a Składnica tree, we
decided to accept any f-structure as its SUBJ in the LFG analysis. This could
potentially lead to excessive growth in the number of incorrect structures accepted
as consistent with Składnica, but guarantees that the correct ones are not rejected.

Another situation in which the subject will be different in Składnica and
POLFIE is the case of coordination where a subject is shared between two con-
joined sentences, as in John ate and drank. Although GFJP does handle some
types of coordinated structures (e.g., coordinated noun phrases), it can only recog-
nise John ate and drank (with an implicit subject) as two conjoined sentences. In
POLFIE, the same sentence would receive two parses: one as above and another
with ‘EAT’ and ‘DRINK’ sharing a common subject ‘JOHN’. Since, without a se-
mantic analysis, it is impossible to tell which one is correct, we cannot reject the
second one based on the fact that drunk has no subject in Składnica. As a simple
solution, we relax the constraints so that a requirement of a ‘PRO’ SUBJ is also
satisfied by presence of any predicate in the place of SUBJ.

Prepositional phrases. In Składnica, all prepositional noun phrases have the
same structure: they are headed by the preposition. In POLFIE, the way f-structure
for a prepositional phrase is constructed depends on its role in a sentence. If
a prepositional phrase is an argument (such as OBL), the main predicate of its
f-structure is the main predicate of the noun phrase and the preposition is only
marked as an atomic value attribute PFORM. If, however, a prepositional phrase
is a modifier, then its main predicate is the preposition, and the f-structure for the
noun phrase is its OBJ. This needed to be taken into account when comparing an
f-structure with the constraints.

Coordination. Another important issue was coordination. In Składnica, a coor-
dinated construction is represented as an exocentric phrase, with the conjunction
being its head. In POLFIE, the representation of a coordinated phrase is an f-
structure containing a set of f-structures for the conjuncts, and the conjunction is
only marked as the COORD-FORM attribute (Patejuk and Przepiórkowski, 2012).
For example, a constraint extracted from the Składnica tree shown in Figure 5
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(1)
Łukasz stop pass cab

“Łukasz stopped the passing cab.”

(2)



PRED ‘ZATRZYMAĆ< 1 , 2 >’ (stop)

SUBJ 1
[
PRED ‘ŁUKASZ’

]

OBJ 2


PRED ‘TAKSÓWKA’ (cab)

ADJUNCT


PRED ‘PRZEJEŻDŻAĆ< 2 >’ (pass)

SUBJ 2





Figure 4: Example of structures for a sentence with active verb participle form: (1)
in Składnica (2) in POLFIE (simplified f-structure only).

would state that the OBJ of ‘EMANOWAĆ’ has as its predicate the conjunction ‘I’,
which is not possible in POLFIE. Instead, we ignore the conjunctions in the con-
stituency trees and treat all the conjoined phrases as head elements. As a result, we
obtain a constraint stating that ‘EMANOWAĆ’ has two OBJs: ‘SZLACHETNOŚĆ’
and ‘POBOŻNOŚĆ’.

4 Experiments and results

There are currently 6513 sentences for which the currently available version of
POLFIE produces non-empty parse forests. Out of those, 206 LFG analyses were
manually disambiguated by an annotator in order to create a development data set.
The implementation of our method was repeatedly tested against this set to ensure
that our approach to pruning LFG parse forests is maximally consistent with the
annotator’s decisions (i.e., it does not reject the f-structures chosen as correct).
Inspection of the development data showed that in the case of 19 sentences, it was
impossible for our method to select the manually chosen parse based on Składnica
due to different interpretations of the sentence (e.g., ambiguity of prepositional
phrase attachment differently resolved by annotators working on Składnica and
LFG parses). Thus, for 92% sentences from the development test, the LFG analysis
selected by the annotator was among the ones pointed out as the most consistent
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(1)
sister emanate nobility and piousness

“The sisters emanated nobility and piousness.”

(2)



PRED ‘EMANOWAĆ< 1 , 2 >’ (emanate)

SUBJ 1
[
PRED ‘SIOSTRZYCZKA’ (sister)

]
OBJ 2

COORD-FORM I{[
PRED ‘SZLACHETNOŚĆ’ (nobility)

]
,
[
PRED ‘POBOŻNOŚĆ’ (piousness)

]}



Figure 5: Example of structures for a sentence with coordination: (1) in Składnica
(2) in POLFIE (simplified f-structure only).

with Składnica.
The above observation suggests that instead of pruning the structures by pre-

serving only those fully consistent with Składnica, another approach can be adopted.
The LFG parses can be ranked according to the degree of accordance with the ap-
propriate constituency tree, i.e., in the increasing order of unsatisfied constraints.
In this way, we expect the correct LFG analysis to appear high in the ranking, but
allow the annotator to look through all parses in case she finds none of the fully
consistent ones appropriate. Another advantage of such approach is that it allows
to smoothly handle the cases in which no f-structure satisfying all the constraints
is found. This can be the case in situations where Świgra’s grammar and POLFIE
differ radically in their treatment of certain language phenomena. Such cases are
difficult to predict due to both grammars still undergoing some changes, but will
not lead to our method completely failing to produce a result for the “problematic”
sentences.

After applying the method to the sentences with more than 1 and less than
10000 LFG analyses (there were 5730 such sentences6), we examined the num-
ber of parses with the minimal number of unsatisfied constraints (i.e., the highest
ranked ones). Figure 6 shows two plots. The first one presents the number of such
parses against the total number of parses for each sentence. The total number of
parses ranged from 2 to 9720, with the median of 13 and mean of 158. The sec-

6737 sentences had only 1 parse and 46 had 10000 or more.
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ond plot presents what percentage of the total number of parses is constituted by
the highest ranked ones. The number of highest ranked parses varies from 2 to
200. The median and mean are 2 and 2.88 respectively, which is a satisfying re-
sult since it reduces the expected number of structures to be seen by the annotator
significantly. The percentage of highest ranked parses decreases quickly with the
increase of total number of parses, which shows that our method is most effective
at pruning in the case of more complicated sentences which are the most difficult
for the annotators.
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Figure 6: Number and percentage of highest ranked parses.

As can be seen in the plots, there are a few sentences for which the number
of parses selected as the most consistent with Składnica is visibly larger than for
sentences with similar total number of parses. This does not seem to be a seri-
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ous problem given the small number of such cases (only for 1% of sentences there
were more than 20 parses selected as the most consistent). Nevertheless, we exam-
ined some of those outlying sentences in order to determine the reasons for such
a behaviour of our method.

One such type of sentence is one with multiple coordinated phrases. In its
present form, our method does not check the internal structure of nested coordina-
tion, i.e., it does not make distinction between structures corresponding to different
bracketings, such as (A and B and C), (A and (B and C)) or ((A and B) and C). It
only checks whether all the conjuncts are present in the correct LFG attribute.
As a result, when many phrases are coordinated, all possible nested structures for
them are admitted as long as the internal structure of each coordinate is consis-
tent with that in Składnica. This leads to an increase in the number of highest
ranked parses. However, adding a mechanism for restricting the constraints for co-
ordination would require deviating from the idea of looking only at the predicate
hierarchy.

Another type are sentences with an initial of a name or surname. Since our
method does not take into account any morphosyntactic information contained in
the f-structure, it accepts structures with the initial being assigned any of 5 gram-
matical genders distinguished in POLFIE.

5 Related work

A work similar to ours in that it involved conversion of the same treebank to an-
other formalism was performed by Wróblewska (2012). The cited paper reports on
a fully automated, unambiguous procedure for creating dependency trees basing
on Składnica’s constituency parses. This approach however differs from ours since
it does not make use of any dependency grammar, only of automatic conversion,
and it does not assume any human disambiguation following the automatic stage,
so the derived structures must be unique per sentence. Other experiments worth
mentioning are those reported by Riezler et al. (2002) who also restricted LFG
analyses to the ones consistent with the constituency trees. Unlike in our method,
they annotated the sentences with WSJ bracketings before passing them to an LFG
parser capable of using such information in order to reduce the number of produced
parses.

6 Conclusion

The method presented above proved to be a useful tool for creating an LFG tree-
bank from existing resource. Even though all used linguistic resources – Świgra,
Składnica and POLFIE – are still being developed and are subject to change, it
should be clear that our general method will require at most only minor improve-
ments concerning handling special cases. As a result we can update the LFG tree-
bank every time Składnica reaches next milestone.
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Although the method proved to be successful in partial disambiguation of LFG
parse forests, full automatisation of creating an LFG treebank on the basis of Skład-
nica is not possible. GFJP and LFG are different formalisms based on different lin-
guistic theories and some data required in POLFIE are simply not present in GFJP
trees. Full disambiguation would require implementing some statistical methods.

The paper is cofounded by the European Union from resources of the European Social
Fund. Project PO KL „Information technologies: Research and their interdisciplinary
applications.
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Abstract

Coordination has always been a difficult phenomenon, with regard to linguis-

tic analysis, manual annotation, and automatic analysis. There is a consid-

erable body of work on detecting coordination and on improving parsing for

this phenomenon. However, most approaches are restricted to certain types

of coordination, such as NP coordination or symmetrical coordination. We

present the first approach to classifying punctuation signs into whether they

function as separators between conjuncts in coordination or not. We show

that by using information from a parser in combination with context infor-

mation, we reach an F-score of 89.22 on the coordination case.

1 Introduction

The syntactic analysis and annotation of coordinated structures has generally been

recognized as a difficult problem, in linguistics as well as in computational linguis-

tics. Most linguistic frameworks still struggle with finding an account for coordi-

nation that is descriptively fully adequate [7]. In parsing approaches, coordinated

structures constitute one of the main sources for errors [9]. Therefore, there are

approaches in parsing that focus on improving parser performance specifically for

this phenomenon [8, 9, 11, for example]. Others focus on detecting the scope of co-

ordinations [6, 17]. However, most of these approaches focus on a closely defined

subset of coordination types: either noun phrase coordination [9] or symmetric

coordination of two conjuncts [13].

For English, one of the reasons for this focus lies in the annotation of the Penn

Treebank (PTB) [15], which does not mark coordinated structures as such (for

more details see section 3). For this reason, it is difficult to find certain coordi-

nations, namely phrasal coordination without an overt conjunction, coordination

on the clausal level, and coordinations with more than two conjuncts. However,

there is an additional resource, which annotates all punctuation signs in the Penn
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Treebank as to whether they function as conjunctions or not [14]. The current ver-

sion of the annotation covers all sentences of the Penn Treebank release 3. Four

annotators were involved.1

In this paper, we use this annotation in combination with the Penn Treebank

to develop an automatic approach to detecting coordination and identifying its in-

ternal conjunct boundaries. More specifically, we interpret this task as a binary

classification problem, in which a classifier decides whether a punctuation sign has

a coordinating function, given its context, or not. If we can detect all punctuation

signs, and combine them with the syntactic annotation, it is possible to determine

the scope of the coordination, but also the number of conjuncts. In the current

work, we focus on determining the types of information that are useful for the clas-

sification task: basic information such as part-of-speech (POS) tags, context words,

or information about context punctuation; gold syntactic information, or syntactic

information from a state-of-the-art parser.

The remainder of the paper is structured as follows: Section 2 describes work

on parsing coordinations, section 3 gives our definition of coordination and de-

scribes the annotations in [14]. In section 4, we describe our experimental setup,

in section 5 the results, and in section 6 our conclusions and future work.

2 Related Work

There are only a few approaches to explicitly identifying conjuncts. Ogren [17]

concentrates on finding the full scope of coordinations with an overt conjunction.

His method constructs simplified sentences out of coordinated sentences, each con-

taining only one conjunct. He extracts possible left and right conjuncts and then

evaluates their quality by a 4-gram language model. While Ogren is aware that

there are coordinations with more than two conjuncts, he seems to group all con-

juncts left of the conjunction into one maximal conjunct. Ogren’s task is at the

same time easier and more difficult than ours: He identifies only one left and one

right conjunct of overt conjunctions, but then, his evaluation is rather strict in that

the span of the conjuncts has to match the gold standard exactly.

Hara and Shimbo [6] work on the identification of the scopes of all coordina-

tions with overt conjunctions in a sentence. Their input is a whole sentence, which

they parse using a simple, manually written, overgenerating grammar for coordi-

nations, in combination with a perceptron model to determine the optimal scope of

potential conjuncts.

All other related works either aim at disambiguating specific subsets of coordi-

nations or at improving parser models to better handle coordinated cases: Chantree

et al. [2] approach cases of noun coordination involving one modifier, such as old
boots and shoes. They use SketchEngine [12] to retrieve collocation statistics

and distributional similarities. Based on this information, the candidates are ranked

by heuristics. Dale and Mazur [4] tackle the problem of conjunction ambiguity in

1The resource will be made available soon via the Linguistic Data Consortium.
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named entity recognition with a supervised approach. Bergsma and Yarowsky [1]

use specialized classifiers based on bilingual, aligned data as well as on Google

n-grams for the same task.

Integrating methods for improving coordination parsing has been performed on

a wide range of languages: Hogan [9] integrates a specialized probability model

for symmetrical coordinations into a parser for English. Guo et al. [5] use LFG-

approximations to deal with long-distance dependencies in Chinese, including co-

ordinations. Kübler et al. [13] work on German: They extract possible scopes

for coordinations with two conjuncts and an overt conjunction and rerank them.

Kawahara and Kurohashi [11] introduce a synchronized generation process into a

generative dependency parser for Japanese. And Henestroza and Candito [8] use

parse revisions to improve coordination, among other phenomena, in French.

3 Coordination Annotation

3.1 Coordination: The Linguistic Basis

Coordinations are complex syntactic structures that consist of two or more con-

juncts. One or more of the conjuncts is often preceded by an (overt coordinating)

conjunction, such as and, or, neither...nor, and but, see (1) for examples from

the Penn Treebank. However, there are also cases of coordinations that lack coor-

dinating conjunctions altogether, see (2).

(1) a. The total of 18 deaths from [malignant mesothelioma, lung cancer and

asbestosis] was far higher than expected, the researchers said.

b. [Mr. Katzenstein certainly would have learned something, and it’s

even possible Mr. Morita would have too].

c. [The [Perch and Dolphin] fields are expected to start producing early

next year, and the Seahorse and Tarwhine fields later next year].

(2) a. . . . a [humble, “uncomplaining, obedient] soul," . . .

b. Back in the chase car, we [drove around some more, got stuck in a

ditch, enlisted the aid of a local farmer to get out the trailer hitch and

pull us out of the ditch].

Coordinate structures typically exhibit syntactic parallelism in the sense that

each conjunct belongs to the same lexical or phrasal category. However, coor-

dinations of unlike categories are also possible, as in the example in (3), which

conjoins the prepositional phrase after the changes and a clause assuming no
dramatic fluctuation in interest rates. Typically, the conjuncts are syn-

tactic constituents, but there are cases of non-constituent conjunctions, such as,

e.g., in example (1-c), which involves an elliptical construction.

(3) He also said that [after the charges, and “assuming no dramatic fluctuation

in interest rates], the company expects to achieve . . .
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( (S (NP (DT the) (NNS pistils) )

(NP-SBJ-1 (, ,) )

(NP (PP-2 (IN of)

(NP (NP (DT the) (JJ same) (NN plant) )))

(NP (DT The) (JJ male) (NN part) ) (VP (VBP are)

(PP (-NONE- *RNR*-2) )) (UCP-PRD

(, ,) (PP-LOC-PRD (IN within)

(NP (NP

(NP (DT the) (NNS anthers) ) (NP (DT a) (NN fraction) )

(PP (IN of) (PP (IN of)

(NP (DT the) (NN plant) )))) (NP (DT an) (NN inch) ))))

(, ,) (CC or)

(CC and) (ADVP (RB even) )

(NP (VP (VBN attached)

(NP (NP (-NONE- *-1) )

(NP (DT the) (NN female) ) (PP-CLR (TO to)

(PP (-NONE- *RNR*-2) )) (NP (DT each) (JJ other) )))))

(, ,) (. .) ))

Figure 1: A PTB tree with a symmetrical and an asymmetrical coordination.

3.2 Coordination in the Penn Treebank

In the Penn Treebank [15], symmetrical coordination is generally annotated by

grouping the conjuncts plus the conjunction under a node of the same type. The

tree in figure 1 shows an example of a coordinated noun phrase (NP) consisting of

two complex NPs, The male part . . . and the female . . . . Especially in cases

without a conjunction, such constructions are difficult to distinguish from appo-

sitions, such as in (4-a), in which the two NPs Elsevier N.V. and the Dutch
publishing group are also grouped under an NP. In some cases, even the pres-

ence of an overt conjunction is misleading when the conjunction introduces a dif-

ferent view of the same entity, as in (4-b). In this example, EWDB is another way of

expressing the name of the company, and thus semantically an apposition.

(4) a. Mr. Vinken is chairman of Elsevier N.V., the Dutch publishing group.

b. The transaction places the three executives squarely at the helm of a

major agency with the rather unwieldy name of Eurocom WCRS Della

Femina Ball Ltd., or EWDB.

Coordinations of unlike constituents are marked specifically, by a mother node UCP,

as shown in figure 1 in the verb phrase (VP) where the PP within a fraction of
an inch is coordinated with the VP even attached to each other. However,

this is only true on the phrasal level; coordinations of unlike clauses are grouped

under an S node without additional coordination marking.

3.3 Coordination Annotation: Making Coordination Explicit

In the version of the Penn Treebank annotated for coordination [14], almost all

of these phenomena are annotated in the POS tag of the punctuation sign. The

annotation focuses on the following punctuation signs: {, ; - – ...}. The only

type of coordination not marked is coordination of clauses when there is no overt

conjunct. Thus, examples (1-b) and (1-c) are marked for coordination, but (2-b) is
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no. conjuncts 26 11 10 9 8 7 6 5 4

with CC 1 1 3 2 3 26 45 119 407

without CC 0 0 0 3 1 11 38 41 45

Table 1: An overview of the number of coordinations with many (≥ 4) conjuncts,

separated into coordinations with and without overt conjunctions (CC).

not. If a punctuation sign serves more than one function and one is coordination, it

is annotated as coordinating.

Additionally, the coordination annotation follows the syntactic annotation of

the Penn Treebank as closely as possible. However, there are annotation errors in

the treebank, such as the attachment of the comma after plant in figure 1, which

should have been attached to the apposition anthers of the plant, not to the

coordinated NP. In such cases, the coordination annotation deviates from the tree-

bank annotation, and the comma after plant is annotated as non-coordinating.

Table 1 gives an overview of the number of coordinations with 4 or more con-

juncts, with and without overt conjunctions over the whole treebank. These num-

bers show that we have a considerable number of coordinations with a high number

of conjuncts, and we also have a non-negligible number of coordinations without

an overt conjunction, i.e., cases where the conjuncts are separated by commas,

semicolons, dots, or dashes. These frequencies show that it is not advisable to

ignore either type of coordination, as has been the standard in previous work on

parsing coordinations.

4 Experimental Setup

As mentioned before, we treat the problem of identifying conjunct boundaries

which are marked by one of the punctuation signs in { , ; - – . . . } as binary classi-

fication task, in which a punctuation sign which marks / does not mark a conjunct

boundary is classified as positive or negative instance, respectively, given the con-

text in which it appears. For the training of the classifier, we use sections 02 to 21

of the WSJ part of the Penn Treebank. For testing, we use section 22. (We reserve

section 23 for parsing results when integrating our annotated punctuation.) The test

set contains 1 937 instances of non-coordination and 351 instances of coordinating

punctuation. As usual for parsing, in all trees, we remove all traces and empty

nodes and the corresponding co-indexation markers on non-terminals.

4.1 Classification

For our experiments we use k-nearest-neighbor classification as provided by TiMBL

version 6.3 [3].2 We describe the context of a single punctuation terminal by both

2We have also performed experiments with Support Vector Machines (SVMlight) [10], and a

Maximum-Entropy classifier (MALLET version 2.07) [16]. However, since their performance was
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word-level and syntactic features. Since the different punctuation signs have differ-

ent distributions of usage in coordinations, we include the punctuation sign itself

as a feature. The words and POS tags around a punctuation sign can be strong

indicators for its function. Consider, for example, the words and and who. While

a comma preceding the former has most likely a coordinating function, a comma

following the latter most likely does not. We include the window of n tokens and

POS tags directly adjacent to the punctuation terminal as features. We also take the

normalized position of the punctuation sign, i.e., its position index normalized by

sentence length, as indicator for its function, as well as the respective normalized

positions of the next coordinating/non-coordinating punctuation signs on its left

and right. Additionally, we use the relative distance of the next coordinating con-

junction (CC) as information since most coordinations have an overt conjunction.

To describe the syntactic context of a punctuation sign, we first consider the

label of its parent node since this should be the node to which the conjuncts to the

left and to the right of the punctuation are attached. We add the siblings of the par-

ent, the grandparent, and information whether the parent dominates a coordinating

conjunction. We also include leaf-ancestor (LA) paths [19] of the n words and POS

tags to the left and right of the punctuation. An LA path is the concatenation of

labels encountered on the path from a leaf node to the root node (including both).

We modify LA paths so that they stop at the parent of the punctuation sign since

the global context should not provide much relevant information.

4.2 Parsing

The syntactic features can be obtained directly from the gold treebank trees. How-

ever, in order to provide a more realistic setting, we also investigate the effect of

obtaining them from the trees output by a parser. In order to build a parsed version

of the training set of the classifier, we use the Berkeley parser [18]. In order to

avoid parsing on data seen in training, we use jackknifing on a 5-fold setting. We

use the default settings for the Berkeley parser. The results for the concatenated

training set and the test set are 84.92/85.03/84.98 in terms of precision, recall, and

F-score.

4.3 Evaluation

Since we treat our problems as a binary classification problem, the obvious eval-

uation metric would be accuracy. However, the sets are heavily skewed towards

negative examples, and many of those are clearly non-coordinating, such as com-

mas before who. For this reason, accuracy would place an overly high weight on

those negative cases. Thus, we evaluate the classifier performance with regard to

both classes, i.e., coordination or non-coordination. We compute precision, recall

(the true positive rate), the F-score, the false positive rate. We report significance

based on McNemar’s test, on the 0.01 and the 0.1 level.

extremely low, even after sampling to reduce the skewing, we concentrate on TiMBL in this paper.
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positive negative

prec. recall fp-rate F-score prec. recall fp-rate F-score

baseline (pos) 87.31 80.34 2.12 83.68 96.49 97.88 19.66 97.18

pos + focus 88.99 80.63 1.81 84.60 96.55 98.19 19.37 97.36

pos + focus additionally:

+1r 89.93 76.35 1.55 82.59* 95.83 98.45 23.65 97.12

+2r 90.88 76.64 1.39 83.15 95.88 98.61 23.36 97.23

+3r 90.16 78.35 1.55 83.84 96.17 98.45 21.65 97.30

+1l 88.16 80.63 1.96 84.23 96.54 98.04 19.37 97.28

+2l 88.25 79.20 1.91 83.48 96.30 98.09 20.80 97.19

+3l 89.03 78.63 1.75 83.51 96.21 98.25 21.37 97.22

+1l+1r 90.00 79.49 1.60 84.42 96.36 98.40 20.51 97.37

+2l+2r 90.82 78.92 1.45 84.45 96.27 98.55 21.08 97.40

+3l+3r 91.18 79.49 1.39 84.93 96.37 98.61 20.51 97.47

pos + focus + 3l + 3r additionally:

+cc 90.25 81.77 1.60 85.80 96.75 98.40 18.23 97.57

+dist 91.83 80.06 1.29 85.54 96.47 98.71 19.94 97.58

+neigh 92.77 84.05 1.19 88.19** 97.16 98.81 15.95 97.98

+dist+neigh 92.43 83.48 1.24 87.72* 97.06 98.76 16.52 97.90

+cc+dist+neigh 90.40 83.19 1.60 86.65 97.00 98.40 16.81 97.69

Table 2: Results for local information, with significance tested against baseline for

pos + focus, against pos + focus for all other experiments; *=0.1; **=0.01.

5 Results

In our test set, we have 2 288 instances of punctuation. Out of those, 351 are

annotated as coordinating. This means that by classifying all punctuation as non-

coordinating, we reach an accuracy of 2 288−351
2 288

= 84.66. However, in our exper-

iments, we are particularly interested in achieving a high F-score with respect to

coordinating punctuation, i.e., the positive class.

To determine parameter settings, we conducted a non-exhaustive search and

found the IB1 algorithm with overlap metric for the computation of instance dis-

tances, feature weighting via GainRatio, using the k = 5 nearest neighbors, and an

inverse linear weighting of neighbors as function of their distances to be the best

parameter combination (see [3] for an explanation of the parameters). All experi-

ments reported below are based on these settings.

5.1 Using Local Context

Our baseline consists of three POS tags to the left and to the right of the punctuation

sign. See the first row of table 2 for the results. Next, we add the punctuation sign

itself (+ focus). This results in an increase of almost one percent point in terms of

positive F-score, as shown in row two.

A separate evaluation of commas and semicolons for the experiment with base-

line and focus word shows a positive F-score of 82.56 for commas and 96.23 for
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semicolons, compared to 84.60 for the complete evaluation.3 Semicolons are clas-

sified much more reliably, most likely due to the fact that most of them are used

on the clausal level, where only coordination cases with overt conjuncts are anno-

tated. Thus, the most difficult cases, particularly those which involve a semantic

component (such as apposition separator vs. NP coordination), involve commas.

Also note that there are many more commas (2 143) than semicolons (76).

We now consecutively add lexical information in order to test our intuition of

its discriminative power. The next part of table 2 shows the results. The highest

F-score in this part is obtained by using 3 words to the left and to the right (+ 3l

+ 3r): a positive F-score of 84.93, which results from a high precision of 91.18.

However, this increase is not significant over the pos + focus setting. Generally,

adding context words increases precision, but has a larger detrimental effect on

recall.

In the next section of the table, we add the position of the punctuation sign

within the sentence (+ dist), the positions of neighboring (coordinating and non-

coordinating) punctuation signs (+ neigh) to the left and right (i.e., 4 features),

and the position of the next conjunction to the right (+ cc). The information about

the position of the next CC-tagged word on the right (+ cc) and the position of the

punctuation sign within the sentence (+ dist) surprisingly do not lead to a significant

improvement of the F-score, as intuition would suggest. However, the four features

of + neigh are particularly effective, leading to a significantly higher F-score. This

setting reaches the highest overall results: positive precision: 92.77, recall: 84.05,

and F-score: 88.19, negative precision: 97.16, recall: 98.81, and F-score: 97.98.

5.2 Using Gold Syntax

In this section, we investigate the benefit of adding (gold) syntactic features. We

first add the parent node (+ p) of the punctuation sign. Then we add the grandparent

(+ gp) and the two directly adjacent sibling non-terminals (+ sib) of the parent. In

a next step, we add leaf-ancestor paths (+ la) as well as information whether the

parent dominates a coordinating conjunction (+ ccn). As further features, we use

the punctuation sign itself (+ focus), the position of its neighbors (+ neigh), and the

three words around it (+ 3l3r). All syntactic features are extracted from the Penn

Treebank.

Table 3 presents the results when using gold syntax.4 The first row repeats the

baseline of three POS tags left and right of the punctuation sign (here with gold

POS tags). When we add the parent node (+ p), we gain approximately 2.7 percent

points in positive precision and about 4.5 percent points in recall. This results

in an F-score of 88.09, significantly higher than the baseline, and only 0.1 lower

than the F-score we gained by adding all the lexical context, thus showing how

important the syntactic context of the punctuation sign is. Adding the grandparent

3Here, we ignore { – - . . . } because there are no positive instances of them in the test set.
4Note that the baseline results are better than for the local context since in the latter, we have used

the POS tags created by the Berkeley parser.
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positive negative

precision recall fp-rate F-score precision recall fp-rate F-score

baseline (pos) 89.46 79.77 1.70 84.34 96.41 98.30 20.23 97.34

+p 92.21 84.33 1.29 88.09** 97.20 98.71 15.67 97.95

+p+gp 92.03 85.47 1.34 88.63 97.40 98.66 14.53 98.02

+p+gp+sib 91.87 86.89 1.39 89.31 97.65 98.61 13.11 98.13

+ p + gp additionally:

+la 90.73 80.91 1.50 85.54* 96.61 98.50 19.09 97.55

+sib+la 90.69 86.04 1.60 88.30 97.49 98.40 13.96 97.95

+ccn 93.98 88.89 1.03 91.36** 98.01 98.97 11.11 98.48

+sib+ccn 93.43 89.17 1.14 91.25** 98.05 98.86 10.83 98.46

+ p + gp + sib + ccn additionally:

+focus 93.16 89.17 1.19 91.12 98.05 98.81 10.83 98.43

+focus+3l3r 92.49 87.75 1.29 90.06* 97.80 98.71 12.25 98.25

+focus+neigh 93.71 89.17 1.08 91.39 98.06 98.92 10.83 98.48

all features 94.26 88.89 0.98 91.50 98.00 99.02 11.11 98.51

Table 3: Results for gold syntax. Significance: against baseline for + p, against +

p for first/second experiments, against + ccn for third/fourth set; *=0.1; **=0.01.

adds an additional 1.1 percent points to recall, which reaches 85.47, but results

in a minimal decrease of precision, causing no significant change in F-score. We

benefit from including the siblings of the parent node of the punctuation sign: the

positive F-score increases slightly, though not significantly.

Adding the leaf-ancestor path to the parent + grandparent combination causes

a significant decrease of the F-score, as shown in the second part of the table.

Adding it to the combination including siblings does increase the F-score to 88.30.

However, this score is lower than the one using sibling information alone. As

expected, + ccn is more important, these results significantly improve over the + p

setting. Combining it with sibling information gives no significant difference.

In the third part of the table, we add information from the previous section that

proved helpful: the focus punctuation sign, its neighbor punctuations, as well as

the lexical context. When we add the focus to the combination baseline + parent

+ grand-parent + siblings + CC-daughter of parent, we reach the highest positive

recall overall, 89.17, but the F-score does not improve significantly over + ccn.

Adding all the information results in the same recall of 88.89 and in the highest

precision (94.26), as well as in the highest positive F-score overall (91.50). These

experiments show that crafting a successful feature combination is a difficult task;

and they indicate that lexical features seem to partially provide a syntactic con-

text when there is no syntactic information. But the syntactic information is more

reliable when available.
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positive negative

precision recall fp-rate F-score precision recall fp-rate F-score

baseline (pos) 87.31 80.34 2.12 83.68 96.49 97.88 19.66 97.18

+p 90.18 83.76 1.65 86.85** 97.09 98.35 16.24 97.72

+p+gp 91.33 84.05 1.45 87.54 97.15 98.55 15.95 97.85

+p+gp+sib 89.91 83.76 1.70 86.73 97.09 98.30 16.24 97.69

+ p + gp additionally:

+la 89.84 80.63 1.65 84.98* 96.55 98.35 19.37 97.44

+sib+la 88.29 83.76 2.01 85.97 97.08 97.99 16.24 97.53

+ccn 91.02 83.76 1.50 87.24 97.10 98.50 16.24 97.80

+sib+ccn 90.21 84.05 1.65 87.02 97.14 98.35 15.95 97.74

+ p + gp + sib + ccn additionally:

+focus 90.91 85.47 1.55 88.11 97.39 98.45 14.53 97.92

+focus+3l3r 92.09 82.91 1.29 87.26 96.96 98.71 17.09 97.83

+focus+neigh 92.64 86.04 1.24 89.22* 97.50 98.76 13.96 98.13

all features 93.40 84.62 1.09 88.79* 97.26 98.92 15.39 98.08

Table 4: Results using the Berkeley parser with significance tested against baseline

for + p, against + p for all other experiments; *=0.1; **=0.01.

5.3 Using Parsing

Here, we investigate whether we can replicate the results above with syntactic in-

formation from the Berkeley parser. Table 4 presents the results based on parser

information. For direct comparison, we report the same feature sets from table 3.

We see that some general trends are repeated: Adding the parent, grandparent,

and focus information is helpful, adding the leaf-ancestor paths is not. Using gold

syntax and baseline features results in an F-score of 84.34; the same experiment

using parsing data results in an F-score of 83.68. Major decreases in positive F-

score occur only with features that heavily rely on syntactic information, such as

+ ccn. However, the highest positive F-score achieved with the gold syntax (91.50)

is just 2.2 points higher than the one based on parser data.

The lower quality of parse trees is particularly reflected in two features: Fea-

tures concerning the siblings (+ sib), and, much more so, the parent of a CC daugther

(+ ccn), are less reliable than their gold syntax counterparts. Instead, we now ben-

efit more from the lexical material around the focus punctuation. The highest pos-

itive recall (86.04) and F-score (89.22) is reached by using parent + grandparent +

sibling + focus + neighbors + CC-daughter information.

We now look at the results with best results from table 4 (+ p + gp + sib +

ccn + foc + neigh), and we separate them based on the mother node. Table 5 lists

the results for the most frequent categories (all other categories had considerably

fewer instances in the test set). Coordinations under S nodes can be detected very

reliably, probably because only overt conjunction cases are annotated, and these are

the easier cases. NPs and VPs are more difficult because they include a larger range

of phenomena: covert conjunction cases, appositions, and superfluous conjunction
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# precision recall F-score

S 735 97.12 94.39 95.73

VP 355 87.50 83.05 85.22

NP 912 90.84 83.80 87.18

Table 5: The results of the +p + gp + sib + ccn + foc + neigh experiment based on

the type of mother node.

commas. However, further insights require a more detailed error analysis.

6 Conclusion and Future Work

We have presented work on automatically distinguishing punctuation signs func-

tioning as separators for conjuncts in coordination from such that do not have a

coordinating function. We used a version of the Penn Treebank in which punctua-

tion signs are annotated whether they have a coordinating function [14]. We have

formulated the task of identifying the status of previously unseen punctuation as a

binary classification problem. Using memory-based learning, we have achieved an

F-score of 91.50 (98.51) on positive (negative) instances of punctuation using fea-

tures drawn from the local context of the punctuation sign to be classified and from

its surrounding syntactic context given by the treebank annotation. Even when us-

ing syntactic trees provided by a parser, i.e., without any gold information, we still

achieve a F-score for positive (negative) instances of 89.22 (98.13).

Our experiments are a first step towards a reliable, cross-category identification

of coordination with scope detection using supervised learning. Our goal is to

include all types of coordination, even if no overt conjunction is present. We are

also planning to include the information learned here into a parsing approach to

improve parsing across all types of coordination.
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Abstract
This paper describes the design and use of TüNDRA: the Tübingen aNnotated
Data Retrieval and Analysis tool. TüNDRA is a web application for search-
ing in treebanks of all varieties, visualizing their contents, and extracting
basic statistics from them. It uses a web-based model for corpus software in
which users do not have to install, upgrade or support complex tools, or deal
with multiple data formats. Providing treebank tools in this manner maxi-
mizes flexibility and functionality while dramatically increasing usability by
making data immediately available to broad communities of researchers.

1 Introduction
TüNDRA is a novel web application for browsing, searching and visualizing the
contents of treebanks, accessible to users via the CLARIN single-sign-on digital
resource infrastructure (Ketzan & Schuster [5]). It has a number of important ben-
efits for treebank research:

• TüNDRA places very few restraints on the kinds of annotations it supports.
Treebank nodes, whether they correspond to tokens, words, constituents or
other abstractions, support any kind of feature with a string value. Depen-
dencies and relations between tree elements can have labels.

• TüNDRA supports both constituency and dependency treebanks, as well as
mixed and hybrid treebank types. Any pair of elements in a tree can be
connected by an edge. There is no requirement for syntax trees to be projec-
tive and there is limited support for directed graphs, although TüNDRA is
oriented primarily towards tree-structured annotation.

• TüNDRA supports all languages and writing schemes for which a freely
usable WOFF font1 is available, including right-to-left oriented scripts like
Arabic, as well as IPA notations.

1Web Open Font Format: Essentially, a wrapper around a TrueType or OpenType font.
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• TüNDRA is offered as a web application, which provides important benefits
for accessibility and a very different use and support model from conven-
tional software.

2 Related work
A number of tools are available for searching and displaying treebanks. Of partic-
ular interest for this project are the TIGERSearch (Lezius [6]) and TrEd (Pajas and
Štěpánek [10]) suites. Furthermore, ANNIS2, GrETEL3, and INESS4, currently
offer treebank search and visualization as a web application, similar to TüNDRA.

TIGERSearch is free, Java-based software that runs on desktop computers. It
only supports constituency treebanks and offers little support for non-European
languages. It is, nonetheless, a popular suite for treebank research, and TüNDRA
has been planned, from the outset, to meet the needs of TIGERSearch’s current
users.

TrEd supports many varieties of treebanks, like TüNDRA, but has a complex
data format into which all data must be converted. Conversion scripts are available
for some standard treebank data formats. Users can configure treebank visualiza-
tions using a stylesheet language unique to TrEd.

TIGERSearch and TrEd both require users to download, install and configure
desktop software. This can be a heavy burden for users and system administrators,
but is intrinsic to the desktop software model (Henrich et al. [3]).

ANNIS (Zeldes et al. [14]) is web-based, supports diverse kinds of treebanks
and uses a query language similar to TIGERSearch, but is offered as software to
download and install locally rather than as a remotely hosted web application.
It also has the ability to import treebanks in a variety formats, but the proce-
dure can be quite complex. Like TüNDRA, ANNIS uses a modified form of the
TIGERSearch query language to search treebanks.

GrETEL (Augustinus et al. [1]) provides a web-based query interface and tree-
bank visualization service for a selection of Dutch-language treebanks. It presently
only supports constituency treebanks, although it allows treebank edges to have la-
bels, and has no direct support for dependency grammar or non-tree edges.

INESS (Rosén et al. [11]) is the closest to TüNDRA in intent and functionality.
It is a web-based application that supports a similar array of treebanks, and uses
an adaptation and extension of the TIGERSearch query language. INESS has sub-
stantially greater visualization abilities for LFG and HPSG style annotation than
TüNDRA as well as support for parallel treebanks, which is currently not a fea-
ture of TüNDRA. Furthermore, INESS offers users access to the XLE parser5 for
a number of languages, so that they can create treebanks from inputted text.

2http://www.sfb632.uni-potsdam.de/annis/
3http://nederbooms.ccl.kuleuven.be
4http://iness.uib.no
5http://www2.parc.com/isl/groups/nltt/xle/
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TüNDRA is a part of the CLARIN-D project6, which is developing an inte-
grated scalable infrastructure for the social sciences and humanities with funding
from the German Federal Ministry for Education and Research (BMBF). It is inte-
grated with CLARIN-D’s WebLicht language tool chaining environment (Hinrichs
et al. [4]), enabling users to create treebanks from texts using a variety of tools,
as well as providing a broad array of services to researchers for developing and
distributing treebanks and other linguistic resources.

3 Treebank access as a web application

TüNDRA is offered as a web application – an alternative approach to software
development and distribution that has a number of advantages over traditional soft-
ware7:

• A web application is accessible from any compatible browser, on any com-
puter with an adequate Internet connection. There is nothing to download,
install or configure, and no particular technical expertise required.

• New features, changes, and bug fixes are available to users without rein-
stalling any software. Tools made available as web applications can be in a
constant state of improvement without interfering with users’ activities.

• Treebank size and access speeds are not bounded by a desktop computer’s
limited memory and storage.

• Users do not have to import treebanks from the many different treebank data
formats, and problems of software compatibility never arise for treebanks
available via TüNDRA.

The principal drawback of providing treebank access as a web application re-
lates to the last point. With locally run software, users can install any compatible
treebank they possess. With TüNDRA, the treebank must be hosted on a remote
server and treebank data must reside there. This creates a number of new issues:

• Treebanks may have licensing restrictions incompatible with web distribu-
tion and access.

• Introducing new treebanks into TüNDRA involves work for the hosting en-
tity, which must take charge of data conversion and any compatibility issues
that arise.

To address the first point, the CLARIN infrastructure offers a number of mech-
anisms to restrict data access to only qualified users, instead of everyone with ac-
cess to the infrastructure. TüNDRA’s currently supported treebanks are accessible

6http://de.clarin.eu/
7See [3] for further elaboration on the motivation behind web applications.
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for all academic users, but the capability exists to further restrict access to spe-
cific treebanks. Nonetheless, for many popular treebanks, we can only offer them
through specially negotiated licenses, and only if the owners are willing.

For the second point, there are two solutions we have implemented or are im-
plementing as part of the TüNDRA web application. First, for owners of treebanks
who are willing to make their work available to the academic community via the
Tübingen CLARIN data repository (Dima et al. [2]), we are provisionally prepared
to take charge in-house of converting them to TüNDRA’s internal data format and
making whatever changes are necessary to TüNDRA to ensure their correct dis-
play and accessibility. We believe this tool can be very valuable for treebank
researchers and are committed to offering a diverse selection of treebanks to the
research community. Furthermore, offering TüNDRA as a web application means
that if changes have to be made to the software to adequately offer a treebank to
users, we can introduce those changes without having to distribute new editions.

Second, TüNDRA is integrated into WebLicht’s expanding functionality for
importing and exporting various data formats, and instead of introducing data con-
version functionality directly into TüNDRA, we will provide data conversion and
user storage through WebLicht. This gives users the ability to upload treebanks
and use them on demand without distributing them.

4 TüNDRA web interface design
TüNDRA uses a single screen so that users never see an entire page disappear and
be replaced by something else. Although provided as a web page in a browser, it
functions much more like a traditional GUI application, and endeavours to uphold
the venerable Principle of Least Surprise in software interface design. Sudden,
unexpected screen changes never take place, and in so far as is feasible, buttons
and menus have standard names and icons, and do what similar controls do in other
software. Comprehensive documentation of the interface is available at all times,
and on-screen messages and help facilities provide usage information wherever it
can be introduced without interfering with user activity.

TüNDRA’s design has been influenced by elements of Activity-Centred Design
(Nardi [9]), which shifts the emphasis in design away from studies of user pref-
erences and instead focuses on users’ activities and contexts. Its principal goal
is to make it as easy as possible for users to perform their tasks so that they can
quickly adapt to the tool, rather than making the tool adapt to users’ preconcep-
tions about what it should do. This approach is especially well-suited to treebank
applications because TüNDRA’s users will likely already have some familiarity
with treebanks and syntactic theories, and many will have some experience with
other corpus tools. These tools are very diverse and a single application cannot
incorporate all those preconceptions without producing an unwieldy and awkward
interface. TüNDRA’s multiple tree visualizations and search language draw heav-
ily on existing sources, but the interface is a new design that attempts to make the
tasks that we expect users to want to perform as immediately accessible as possible.
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Figure 1: TüNDRA start screen displayed in the Firefox browser

As a specific example of how this approach has influenced TüNDRA’s design,
there is special functionality that appears when TüNDRA is used in a browser
with a small area, providing a more compact display that is especially suited for
digital projectors. Enquiries into the purposes for which users employ treebank vi-
sualization software revealed that classrooms and conferences are very important.
Usability at small resolutions is, therefore, a high priority function for TüNDRA.

5 Using TüNDRA
Users from academic institutions participating in the DFN-AAI credential service8

automatically have access to TüNDRA through the CLARIN-D infrastructure us-
ing their existing institutional login credentials. Other academic users can re-
quest an account directly from CLARIN-D9. Users can access TüNDRA at https:
//weblicht.sfs.uni-tuebingen.de/Tundra/.

Figure 1 is the opening screen users see on logging into TüNDRA. This screen
is designed to encourage users to inform themselves at least a little bit before div-
ing into TüNDRA, while allowing experienced users to move directly to the con-
tent without having to dismiss popups or other irritants at start time. Users can
open an installed treebank immediately for inspection and search by clicking the
icon marked "Open a treebank" and then selecting from a list of installed tree-
banks. Users can then browse freely, access a sentence by index number, or enter
in the upper left corner textbox a treebank pattern for TüNDRA to match (using
the search syntax described in Section 6) and view the results.

8https://www.aai.dfn.de/
9https://user.clarin.eu/user/register
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Figure 2: TüNDRA displaying a tree from the TüBa-D/Z treebank of German

Trees and query results are displayed in the large panel on the right of the
screen, as in Figure 2. The top part of the tree visualization panel shows informa-
tion about the current sentence, its place in the treebank or query results, and has
navigation controls for viewing other sentences in the treebank.

6 Searching
TüNDRA was designed from the outset to reimplement the TIGERSearch query
language (Martens [7]). TüNDRA implements all TIGERSearch functionality ex-
cept for user-defined shortcuts, and has extended the language in some areas. Users
familiar with TIGERSearch will find its behaviour almost identical. The most im-
portant difference is in the treatment of negated relations, discussed in Section 6.2.

This section offers a very cursory look at TüNDRA query syntax, and much
richer information is available on logging into TüNDRA. All example queries in
this section are based on the annotation scheme of the TüBa-D/Z treebank of Ger-
man (Telljohann et al. [13]), which is installed and searchable through TüNDRA.

6.1 Features

To match a constituent or token with a particular feature value, users enter a query
like the one below:

[pos="NN"]

This query matches all elements with a feature named pos whose value is NN –
in the example corpus, any token whose part-of-speech corresponds to an ordinary
noun. Specifications for multiple features simply join them with the boolean &
(AND) and | (OR) operators.
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Feature names and values can be any Unicode string, and any node in a tree
can have as many features as required. Feature names are arbitrary, except for a
few features with special display properties or querying functions.

TüNDRA supports Unicode regular expressions searches on all labels. For
example, to find all tokens containing the character "ß", use [word=/.*ß.*/].

6.2 Relations

To query relations between two nodes, two node specifications are connected using
a relational operator. For example, to query for a node whose cat attribute has the
value NX (the standard label for noun phrases in the TüBa-D/Z treebank) that is
also the immediate parent of another node with a pos attribute that has the value
NN, use:

[cat="NX"] > [pos="NN"]

When a parent-child relation has a label, that can also be queried.
Similarly, to search for a node matching [cat="NX"] that is an ancestor of a

node matching [pos="NN"] at any distance:

[cat="NX"] >* [pos="NN"]

And to query for nodes matching [cat="NX"] that do not have any immediate
descendants that match [pos="NN"]:

[cat="NX"] !> [pos="NN"]

Users familiar with TIGERSearch should note that negated relations are han-
dled differently in TüNDRA. In TIGERSearch, whenever a query specifies a node,
even in negation, it must match some node in a matching sentence, reducing the
usefulness of operator negation in TIGERSearch.

In TüNDRA, negated relations more closely match user expectations. The
query above will match nodes of category NX even in sentences that do not con-
tain any node matching [pos="NN"]. However, full universal negation - negating
entire structures instead of individual relations - has not yet been implemented di-
rectly in TüNDRA syntax.

Relations of several kinds are available for querying using a similar syntax. For
example, to query for the words "the" and "bank" next to each other:

[word="the"] . [word="bank"]

Searching for secondary edges (additional relations that are not part of the main
syntactic tree, like co-references) and their labels is also supported, using the same
query syntax as TIGERSearch (the >~ operator), without restrictions on the nodes
that can bear secondary edges. This provides limited support for non-tree struc-
tures. Full support for arbitrary directed graphs is possible using the TüNDRA
query engine, but this has not yet been implemented in the interface.

TüNDRA supports queries for ancestry and descent, surface sequence (i.e.
word and constituent order), sibling relations, and siblings in surface sequential
order.
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(a) A match on a three node parent-child
structure

(b) A match on a three node
structure with multiple con-
straints

Figure 3: Querying multiple nodes and complex structures

6.3 Variables and multiple relations

To search for more complex structures, TüNDRA query syntax supports chaining
together relations on nodes, and supports variable labels so that one node can par-
ticipate in multiple relations. For example, the two queries below produce identical
search results and match the structure in Figure 3a:

[cat="MF"] > [cat="NX"] > [pos="NN"]
[cat="MF"] > #1:[cat="NX"] & #1 > [pos="NN"]

Using variables makes it possible to query on structures that involve, for ex-
ample, multiple descendants of a single node, or different kinds of relations on a
single node, or with multiple constraints, as in the query below, matching Figure
3b :

#1:[cat="NX"] > #2:[pos="NN"] & #1 > #3:[pos="ART"] & #3 . #2

Variables can also be used for nodes without specifying any features. For ex-
ample, the query #1 > [word="Band"] identifies all parents of a node matching
[word="Band"], without any restriction on their features.

6.4 Statistics

Variables are also used to collect statistics on matches. For example, to get counts
for all the features (including tokens, lemmas, and morphological information) of
all grammatical articles in the TüBa-D/Z treebank that immediately precede the
word "Band", use the following query:

#1:[pos="ART"] . [word="Band"]
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Figure 4: Statistics results

Note that the node specification is accompanied by a variable name. This would
not be necessary for simply searching for matching structures, but is required to
collect statistics. The results are displayed on screen, as in Figure 4. Users can
browse, reorder, and download the results for further processing.

(a) Tiger style (b) Generative grammar style

(c) Bracketed style

Figure 5: Three visualizations of a constituency tree from the TüBa-D/Z treebank
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(a) Word Grammar style (b) TrEd style

Figure 6: Two visualizations of a dependency trees from the Index Thomisticus
Treebank (McGillivray et al. [8]), accessible via TüNDRA.

7 Visualization

In order to provide the greatest immediate utility to existing users of treebank soft-
ware, TüNDRA provides three different visualization schemes for constituency
trees and two for dependency trees. Figure 5 shows all three constituency tree
visualizations of the same sentence from the TüBa-D/Z:

1. TIGERSearch style tree display. (Figure 5a)

2. A generative grammar style tree display. (Figure 5b)

3. A linear display with constituents designated by brackets, using different
sizes and colours of brackets to improve readability. (Figure 5c)

Similarly, TüNDRA has two tree drawing styles for dependency trees:

1. A linear display with arcs between words, based on the styles frequently used
for Word Grammar (Sugayama & Hudson [12]) and some other dependency
formulations. (Figure 6a)

2. A drawing style based on the TrEd software (Pajas and Štěpánek [10]) fre-
quently used with the Prague Treebank and similar corpora. (Figure 6b)

All trees are drawn to match the surface order of tokens. Non-projective rela-
tions are displayed as crossing branches. TüNDRA does not impose projectivity
on the trees it displays.

On-screen controls allow users to switch freely between visualizations, to mag-
nify and shrink all or parts of the display, navigate in the visualization, and down-
load the rendered visualizations in several graphics formats.
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8 Technical implementation

TüNDRA uses a number of off-the-shelf web application frameworks and tech-
nologies, but is particularly reliant on browser support for SVG10. Consequently,
users with older or non-standard browsers may not be able to use TüNDRA. Us-
ing SVG makes it easier to let users download rendered trees for their papers and
presentations - a major feature for academic researchers.

The TüNDRA query system is built around the open source BaseX11 library
for XQuery12. TüNDRA queries are translated into XQuery syntax, then applied to
treebanks that are encoded in an application-specific XML tagset. Using BaseX as
an underlying framework has made it much easier to develop and extend TüNDRA,
since the lower level requirements of a query resolution system are already handled
by a robust, fast, externally maintained library. XQuery is a sufficiently powerful
language that any extension to TüNDRA can be implemented by simply identifying
appropriate XQuery syntax.

9 Conclusion

TüNDRA is a new approach to treebank search and visualization software, one
intended to support a broad array of treebanks including both constituency and
dependency formalisms. It operates as independently as possible of the linguistic
assumptions that underlie individual treebanks. TüNDRA also eliminates many
difficult problems with software installation, data formats and resource limitations.

TüNDRA is an on-going project, and by opening it up to as large an audience
as possible, we hope to receive feedback from researchers in order to make it pro-
gressively more useful. The web application model makes it more than just a piece
of software – it is also a constantly improving publishing platform for treebanks.
We are committed to maintaining and extending TüNDRA as a medium for making
treebanks more accessible to the research community.
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Abstract

Various parsing models — based on different parsing algorithms or differ-
ent sets of features — produce errors in different places in the dependency
trees — [6]. This observation initiated a wide range of research devoted to
combining the outputs of various parsing models with the hope to achieve a
better parsing result. In this paper we present our work on combining results
from 14 parsing models for Bulgarian. First, we construct an extension of the
Bulgarian treebank with the parses from each of the models. Then, we eval-
uate different combining approaches including three voting models and two
machine learning approaches. Each of the weighting mechanisms is used by
two different tree construction algorithms to find an optimal solution.

1 Introduction

The combination of several dependency parsers is motivated by the need of having
an accurate parser even at the price of slower performance. Considering the out-
comes of [10], we have performed several experiments to assemble the results of
several parsing models using different types of voting and also exploiting machine
learning techniques. We show that, contrary to the conclusion of [10], machine
learning techniques can outperform voting techniques.

First, we tried fourteen different parsing models using two of the most popular
parsing systems: MaltParser (see [7]) and MSTParser (see [5]). They were trained
using different parsing algorithms and different sets of features. Our goal was to
minimize the number of nodes for which there was no parsing model to infer the
correct arc. For each of the fourteen models at our disposal, we constructed a ver-
sion of the original treebank where we stored the arcs suggested by the parsing
model. Thus, at the end we had fourteen additional treebanks — one per model.
We used them for performing the voting experiments and for training a machine
learning component to select the most appropriate arc for each node. We exper-
imented with three voting approaches: (1) majority of the parsers that selected a
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given arc; (2) maximum of the sum of parsers’ accuracy values of the parsers that
selected a given arc; and (3) average of the accuracy of the parsers that selected
a given arc. The best result was achieved by the second approach. For machine
learning approaches we performed two experiments: (1) selecting the correct arc
among all arcs suggested by the fourteen models; and (2) ranking the arcs by com-
paring pairs of arcs. Here also the second approach was the best. In both cases we
used two algorithms for constructing dependency trees from the trees suggested by
the fourteen models: the incremental algorithm of [1] and the global algorithm for
non-projective parsing of [5]. The most evident difference between the two models
is shown by the second machine learning approach.

The structure of the paper is as follows: first, we discuss the related work; in
the next section, the linguistic phenomena, encoded in the treebank, are presented;
in Section 4 we introduce the parsing models that we have trained as well as the
construction of an extended version of BulTreeBank to be used in the experiments;
Section 5 describes the models that we exploit for the voting combination of parses;
Section 6 presents the machine learning approaches relevant to the task; the last
section concludes the paper.

2 Related work

Our work is inspired by the analysis of the two most influential dependency parsing
models: transition-based and graph-based frameworks — [6]. They showed that
these two frameworks made different errors on the same training and test datasets.
The authors conclude the paper by proposing three approaches of using the ad-
vantages of both frameworks: (1) Ensemble systems — weighted combinations of
both systems output; (2) Hybrid systems — design of a single system integrating
the strengths of each framework; and (3) Novel approaches — based on combi-
nation of new training and inference methods. In their further work (see [8]) the
authors present a hybrid system that combines the two models. In our work we
consider option one — ensemble systems, since it is easier to implement and does
not require further knowledge of the models and the design and implementation
details of the parsing algorithms.

Another work devoted to ensemble systems is [10]. They tested different ap-
proaches to parser integration — different types of voting and meta-classification.
The voting determines the correct arcs on the basis of majority of parsers that select
given arcs. The weighted voting is using the accuracy of each parser in order to
choose between them for each arc. Authors’ conclusion is that meta-classification
does not help for improving the result in comparison to voting. The authors divided
the dependencies into two ways: majority dependencies and minority dependen-
cies. Their conclusion is that meta-classification cannot provide a better selection
on minority dependencies, and in this way it is comparable to voting. In our work
we show that depending on the feature selections for the meta-classification we
might outperform the voting approach. The results reported in [10] do not use a
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special algorithm for the selection of dependencies. They do not require the result
to be a tree. In our work we use two algorithms to ensure the construction of trees.
We show that the improvement also depends on the algorithm for constructing the
complete tree.

As mentioned above, we use two algorithms for construction of the depen-
dency tree. The first algorithm is reported in [1]. It constructs the dependency
tree incrementally starting from an empty tree and then selecting the arc with the
highest weight that could extend the current partial tree. The algorithm decides for
the best arc locally. We will denote this algorithm below as LocTr. The second
algorithm is Chu-Liu-Edmonds algorithm for maximal spanning tree implemented
in the MSTParser of [5]. This algorithm starts with a complete dependency graph
including all possible dependency arcs. Then the algorithm selects the maximal
spanning tree on the basis of the weights assigned to the potential arcs. In our
work we use weights for the arcs assigned in two ways: (1) by voting; and (2) by
metaclassifiers. The arcs that are not proposed by any of the parsers are deleted.
This algorithm is global with respect to the selection of arcs. We will denote this
algorithm below as GloTr.

3 The Linguistic Annotation of the Bulgarian Treebank
(BulTreeBank)

BulTreeBank (see [9]) is a treebank that provides rich linguistic information going
beyond the syntactic information. It has part-of-speech (POS) and full grammatical
tags; lemmas; syntactic relations, based on Head-driven Phrase Structure Grammar
(HPSG); named entities and co-references within a sentence.

Figure 1: HPSG-based tree for the sentence “Âåäíàãà îäîáðè íàìåðåíèåòî íà

ñåñòðà ñè” (‘Immediately approved intention of sister his’, He approved his sis-
ter’s intention immediately).
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Figure 1 presents the HPSG-based tree of a Bulgarian sentence. Here two
things are worth mentioning: the presence of dependency information in the HPSG-
based version (NPA means a nominal phrase of type head-adjunct) and the presence
of a co-reference link between the unexpressed subject and the reflexive possessive
pronoun. In the HPSG-based version of the treebank the unexpressed subject is
represented explicitly only in the cases when it participates in a coreference chain
as in this example. It is considered a property of the verb node, not a part of the
constituent structure.

In Figure 2 the same sentence can be observed in a dependency format. The
head-adjunct relation within the NPA nodes in the HPSG-based tree is projected
into a head-modifier relation in the dependency tree. The arc labels are represented
as ovals between word nodes. The coreference is represented as a secondary edge
between the corresponding word nodes.

Figure 2: Dependency tree representation of the sentence from Figure 1.

In Table 1 the dependency tagset related to the Dependency part of the BulTree-
Bank is presented. In addition to the dependency tags we also have morphosyn-
tactic tags attached to each word. For each lexical node the lemma is assigned.
The number under the name of each relation indicates how many times the rela-
tion appears in the dependency version of BulTreeBank. Many parsers have been
trained on data from BulTreeBank during the CoNLL 2006 shared task and after1.
BulTreeBank appeared to be one of the best parsed treebanks — [3].

1See papers in the proceedings at http://aclweb.org/anthology/W/W06/#2900
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Relation Occurrences Description
adjunct 12009 Adjunct (optional verbal argument)
clitic 2263 Short forms of the possessive pronouns
comp 18043 Complement (argument of non-finite verbs,

copula, auxiliaries)
conj 6342 Conjunction in coordination
conjarg 7005 Argument (second, third, ...) of coordination
indobj 4232 Indirect Object
marked 2650 Marked (clause, introduced by a subordinator)
mod 42706 Modifier (dependants which modify nouns,

adjectives, adverbs, ...)
obj 7248 Object (direct argument of a non-auxiliary ver-

bal head)
pragadjunct 1612 Pragmatic adjunct
punct 28134 Punctuation
subj 14064 Subject
xadjunct 1826 Clausal adjunct
xcomp 4651 Clausal complement
xmod 2219 Clausal modifier
xprepcomp 168 Clausal complement of preposition
xsubj 504 Clausal subject

Table 1: Dependency relations and numbers of their occurrences in BulTreeBank.

4 Parser Models and Extension of the Treebank

For our experiments we have trained 12 models of MaltParser [7] using different
parsing algorithms and different features, and MSTParser of [5] with two different
sets of features. The models are: MaltParser and MSTParser.

Initially, we conducted a series of experiments with both parsers and BulTree-
Bank using 10-fold cross-validation. The original treebank on which the models
were trained contains 11988 sentences. They were randomly divided in ten train-
ing and test sets in such a way that each sentence appeared in one test set. Each
training set contains 10790 sentences and each test set — 1198. The number of
tokens is 183649. For each of the models we performed ten training sessions. The
trained model was applied on the corresponding test set for evaluation, but also
the predicted parses for each sentence were stored. In this way, for each model
we constructed a treebank of the suggested parses. Thus, at the end we had the
original treebank plus fourteen treebanks of parses. We used all these treebanks
for performing different combinations of parses from the different models.

For MSTParser we preselected the two best performing parsers on average with
major difference in the scope of features (order). The first parser used features over
a single edge, while the second one used features over pairs of adjacent edges. The
rest of the parameters were chosen for the parser’s optimal labeled and unlabeled
accuracy, on average, of the experiments on BulTreeBank: MST01 model used the
following features: loss-type: punc; second-order: false; training-iterations: 15;
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trainingk: 1; decode-type: non-proj; create-forest: true; MST02 model used the
following features: loss-type: punc; second-order: true; training-iterations: 15;
trainingk: 1; decode-type: non-proj; create-forest: true.

For MaltParser we applied three Malt algorithms: Covington non-projective,
Stack Eager and Stack Lazy. The predefined flow chart is set to learn. The actual
configuration type of MaltParser is “singlemalt". The input data type is CoNLL-X
shared task data format — see [3]. According to the Covington algorithm, each
new token is attempted to be linked to the preceding token. In our study, we con-
figured the Covington model with root and shift options set to true. During the
parsing process, the root could be treated as a standard node and attached with a
RightArc transition. The option Shift = true allows the parser to skip remaining to-
kens in Left (otherwise all tokens in Left must be analyzed before treating the next
token). The Stack algorithms use a stack and a buffer, and produce a tree without
post-processing by adding arcs between the two top nodes on the stack. Via a swap
transition, we obtain non-projective dependency trees. The difference between the
Eager algorithm and the Lazy algorithm is the time when the swap transition is ap-
plied (as soon as possible for the first algorithm and as late as possible respectively
for the second one). The execution of algorithms with the LIBLINEAR method is
faster than algorithms with the LIBSVM method and the results are better. On the
basis of these six models we constructed additional six ones by extending the set
of node features including more detailed description of grammatical features and
lemma.

The results in terms of Labeled Attachment Scores (LAS) and Unlabeled At-
tachment Scores (UAS) for the fourteen models are given in Table 2.

MLT01 MLT02 MLT03 MLT04 MLT05 MLT06 MLT07
LAS 0.842 0.788 0.843 0.809 0.825 0.820 0,863
UAS 0.886 0.835 0.887 0.860 0.869 0.869 0,900

MLT08 MLT09 MLT10 MLT11 MLT12 MST01 MST02
LAS 0.810 0.872 0.844 0.851 0.847 0.852 0.828
UAS 0.849 0.909 0.886 0.887 0.888 0.898 0.872

Table 2: LAS and UAS results for the fourteen models.

The models do not predict the correct unlabeled arc for 1.99% of the words in
the treebank. For the labeled arcs the percentage is 3.49%. Thus, the upper bound
for the UAS measure is 98.01% and for the LAS measure is 96.51%. The results
reported within this paper are still far from the upper bounds for both measures.

5 Combining Parses by Voting

We investigated three voting models: (1) the arcs are ranked by the number of the
parsers that predicted them; (2) the arcs are ranked by the sum of the UAS measures
for all parsers that predicted the arcs; and (3) the arcs are ranked by the average
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of the UAS measures of the parsers that predicted the arcs. Let us consider an
artificial example for arcs suggested by different models. They are given in Table 3

MLT01 MLT02 MLT03 MLT04 MLT05 MLT06 MLT07
Node Arc01 Arc02 Arc01 Arc01 Arc03 Arc02 Arc02
UAS 0.835 0.887 0.860 0.869 0.869 0.886 0,899

MLT08 MLT09 MLT10 MLT11 MLT12 MST01 MST02
Node Arc01 Arc04 Arc03 Arc03 Arc03 Arc02 Arc02
UAS 0.848 0.908 0.886 0.887 0.888 0.898 0.872

Table 3: Different arcs for a node in a tree. For orientation we also give UAS values
for each model.

On the basis of these arc suggestions and UAS values for the different models
we can calculate the three ranks. These ranks for voting are given in Table 4.
As it can be seen, the different ranking models define a different ordering on the
arcs. Different values also play significant role when the arcs are combined by the
algorithms to form a dependency tree.

Arcs UASes Rank01 Rank02 Rank03
Arc01 0.835, 0.860, 0.869, 0,848 4 3.412 0.853
Arc02 0.887, 0.886, 0.899, 0.898, 0.872 5 4.442 0.888
Arc03 0.869, 0.886, 0.887, 0.888 4 3.530 0.883
Arc04 0.908 1 0.908 0.908

Table 4: Different ranking for voting.

We ran both algorithms (LocTr and GloTr) for construction of dependency
trees on the basis of combinations of dependency parses over results from all mod-
els. Then following the suggestions of [10] we performed combinations by using
the results from different models. Although our results are not drastically different,
they show that combining only a few of the models could give better results than
combining all the models. It is interesting that combining several parser models
with best scores does not give the best result, but it is relevant to include at least
one parser model with low score. Table 5 shows the results from combining all
fourteen models and then the best combinations for 3, 4 and 5 models.

The results clearly show that ranking with average accuracy influences per-
formance very negatively. The experiments demonstrate slight preference for the
rank, based on the sum of accuracies for the various models. The good news is that
several combinations achieved substantial improvement over the accuracy of the
individual models.

6 Combining Parses by Machine Learning

Although [10] claimed that they could not implement a combination model that
involves machine learning methods for selection of arcs and which improves sub-
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Models Algor. Rank01 Rank02 Rank03
Number Sum Average

LAS UAS LAS UAS LAS UAS
All LocTr 0.856 0.919 0.857 0.921 0.788 0.843

GloTr 0.883 0.919 0.885 0.921 0.804 0.836
MLT08, LocTr 0.876 0.920 0.878 0.922 0.844 0.885

MLT09, MLT11 GloTr 0.869 0.903 0.875 0.909 0.858 0.893
MLT07, MLT08, LocTr 0.872 0.918 0.877 0.922 0.830 0.871
MLT09, MLT11 GloTr 0.873 0.907 0.882 0.916 0.852 0.885
MLT07, MLT08, LocTr 0.875 0.923 0.875 0.924 0.828 0.872

MLT09, MLT11, MST01 GloTr 0.886 0.918 0.888 0.921 0.850 0.881
MLT07, MLT09, LocTr 0.874 0.923 0.875 0.924 0.828 0.872

MLT12, MST01, MST02 GloTr 0.888 0.923 0.891 0.925 0.840 0.872
MLT01, MLT07, LocTr 0.872 0.925 0.873 0.925 0.825 0.872
MLT09, MLT11, GloTr 0.891 0.925 0.892 0.925 0.838 0.869

MLT12, MST01, MST02

Table 5: Voting using algorithms LocTr and GloTr for tree construction.

stantially over the voting approaches, we performed several experiments in order to
test different feature sets. Our goal was to test this claim on our data. Our intuition
was that independently from the task: direct dependency parsing or combining ex-
isting parses, we need machine learning mechanisms that are able to learn also
hard-to-predict dependencies.

Here we conducted two experiments using the extended treebank for training
and testing of machine learning techniques for ranking suggested arcs. Again, as in
the case of voting, we tested both algorithms for the construction of the dependency
trees.

The experiments were conducted using the package RandomForest2 of the
system R3. Random Forest (see [2]) constructs randomly several decision trees
over the data and then assembles their predictions. We chose this package because
of the following characteristics of RandomForest: (1) it supports classification
and regression methods; and (2) it does not overfit. The data for RandomForest is
prepared as a vector of feature values where one of the features determines what
the package predicts.

The treebank was divided again into training and test parts in the same propor-
tion: 90% for training and 10% for test. The division was made orthogonal to the
division used for the creation of the fourteen treebanks used to train the models. In
this way, we reduced the bias from the training of the parsing models.

Our goal was to evaluate each arc suggested by a parsing model as a correct
arc for a given context or as an incorrect arc for the context. Each arc was modeled
by three features: relation (Rel), distance to the parent node measured as a number

2http://cran.r-project.org/web/packages/randomForest/randomForest.pdf
3http://www.r-project.org/
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of words in the sentence between the two nodes (Dist) and direction of the parent
node (Dir). Direction could be Left, which means the parent node is on the left
side of the node, and Right — the parent node is on the right side of the node.
In cases when these features are not relevant, we simply use Arc or ArcN for the
arc features. The features for each word node include: the word form (WF), lemma
(Lemma), morphosyntactic tag (POS). Again, when the features are not important in
isolation, we denote them as Word with optional modification.

For the first experiments we have evaluate the appropriateness of one arc be-
tween dependant node Word and a head (or parent) node. In this experiment we
have used all the arcs for a given node as a context together with the trigrams
around the node, and the parent node. The node has features Word, the parent
ParentWord. A representation of this data as a value vector for RandomForest is
presented in Table 6.

Feature Value
Word the current node
WordBefore the word before the current node
WordAfter the word after the current node
Arc01, ..., ARC14 arcs suggested by each of the fourteen models
ParentWord the parent word
PWordBefore the word before the parent word
PWordAfter the word after the parent word
EvaluationArc one of the arcs suggested by one of the models

for the node
CorrectIncorrect true or false depending on whether the

EvaluationArc arc is the correct one for the node

Table 6: Feature vector used with RandomForest for the first experiment.

All tuples for all arcs in the training and the test parts of the extended treebank
were generated. The tuples generated from the training part of the treebank were
used to train the RandomForest, then the model was applied on test set to classify
each of the tuples as correct or incorrect.

The first experiments were done using the classification method of RandomForest.
The results were very disappointing. Table 7 presents the results for this classifica-
tion method. These are the results for the tuples, not the dependencies.

Correct Incorrect
True 65.2% 73.4%
False 34.8% 26.6%

Table 7: Results from the classification of tuples.

The results obtained for tree construction were very bad. Our explanation of
the results is the fact that we had only two classes. Thus the classifier was sensitive
to values close to 50%. Thus, dependencies that were hard to predict correctly very
often received weights near to this threshold, and small fluctuations above or under
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it caused wrong classification. The first attempt to avoid this problem was to divide
the training and the test sets according to the POS information for the wordform.
Unfortunately, this did not improve the situation substantially. The second attempt
we performed was to switch from this classification method to regression.

Model Algorithm LAS UAS
MLearn14 LocTr 0.859 0.920
MLearn14 GloTr 0.896 0.925

Table 8: Results for the algorithms LocTr and GloTr when the correctness of an
arc is evaluated with respect to all 14 models.

In order to use the regression method, we first encoded all the symbolic data
as numerical data. The results from regression are between 8 and 17 mean of
squared residuals which are much better than the results for classification. Again,
the training and test sets were divided according to the POS tag of Word. Each
element of the test set received a weight returned from the regression model for the
corresponding part of speech. These weights were used by the algorithms LocTr
and GloTr to construct the dependency trees. The results from the two algorithms
are presented in Table 8.

These results confirm the conclusions of [10] that machine learning hardly im-
proves over the voting methods. Our explanation of the results is that the machine
learning component is learning to do voting selecting the best suggestion of the
fourteen parsing models. Thus, using all the fourteen arcs as a context is not a
good idea. In order to avoid such cases, we designed a second experiment in which
the candidate arc was evaluated in the context of one alternative arc for a given
node. In this way, we were trying to implement a model which learns which arc
from two candidate arcs is better for a node. Thus, for the second experiment we
have evaluated the appropriateness of one arc between a dependant node Word and
a head (or parent) node in context of one alternative arc for the same node with the
trigrams around the node, and the parent node. The node has features Word, the par-
ent has features ParentWord. For the alternative arc we also have used as a context
the grammatical features of its parent node — AltParentPOS. A representation of
this data as a value vector for RandomForest is presented in Table 9.

The training and test sets were divided further according to the POS tag of
Word. The mean of squared residuals for the different parts of speech are between 4
and 12. Each element of the test set received a weight returned from the regression
model. But this time some of the arcs in the treebank could receive more than one
weight because each arc could have more than one alternative arc. We used these
weights to define three models: (1) prefer as a weight for the arc the maximum of
the weights for the tuples for the arc; (2) prefer as a weight for the arc the minimum
of the weights for the tuples for the arc; and (3) assign as a weight for the arc the
multiplication of the weights for the tuples for the arc. For all three models we
ran the algorithms LocTr and GloTr to construct the dependency trees. The results
from this experiment are presented in Table 10.
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Feature Value
Word the current node
WordBefore the word before the current node
WordAfter the word after the current node
ArcAlt alternative arc
AltParentPOS grammatical features for alternative parent node
ParentWord the parent word
PWordBefore the word before the parent word
PWordAfter the word after the parent word
EvaluationArc the arc which we compare with the alternative arc ArcAlt
CorrectIncorrect true or false depending on whether the

EvaluationArc arc is the correct one for the node

Table 9: Feature vector used for the second experiment with RandomForest.

Model Algorithm MinRank MaxRank MultRank
LAS UAS LAS UAS LAS UAS

MLearn01 LocTr 0.844 0.903 0.843 0.902 0.828 0.887
MLearn01 GloTr 0.899 0.929 0.897 0.926 0.886 0.915

Table 10: Results for the algorithms LocTr and GloTr when the correctness of an
arc is evaluated with respect to one alternative arc.

These results show that machine learning could improve substantially the vot-
ing models. In our case the improvement is near half percent. These results show
better the difference between the two combining algorithms (LocTr and GloTr) —
the results from the global optimization are better than the local optimization.

7 Conclusion and Future Work

In this paper we presented several approaches for combining parses produced by
several parsing models. These approaches include three types of voting and two
machine learning approaches. Also, for the construction of the combined trees we
used two different algorithms — one performing local optimization and one per-
forming global optimization. The better ranking of the suggested arcs also demon-
strates the better performance of the global algorithm.

Although we achieved some substantial improvement over the individual mod-
els (near 3% improvement), the results are far from the potential maximum UAS
measure of 98.01% and for LAS measure — of 96.51%. In spite of that, our best
result is near to the state-of-the-art performance for Bulgarian — 93.5 % — see
[4]. Thus, our first goal to have access to a better parser for Bulgarian is achieved.

In future, we would like to combine better individual parsing models. In these
experiments we executed the very basic parser configurations without extensive
optimization. We hope that starting from better models, the combined result will be
also better. Also, we would like to include more sentences in the original treebank
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in order to have better coverage of the problematic cases. Last, but not least, it will
be interesting to see the impact of adding semantic features to the model.

Acknowledgements

This research has received partial funding from the EC’s FP7 (FP7/2007-2013)
under grant agreement number 611760. We would like to thank Laura Toloşi for
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